Стробоскопы для авто зажигание схема. Схема и изготовление своими руками стробоскопа для установки зажигания (УОЗ). Стробоскоп своими руками — экономия материальных средств

Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. Используя стробоскоп, это процесс можно облегчить. Однако промышленные устройства достаточно дорогие, поэтому многие изготавливают стробоскоп для зажигания своими руками.

Недостатки промышленных моделей

Промышленные устройства зачастую имеют определенные недостатки, из-за которых полезность прибора весьма сомнительна.

Для начала, цена на них бывает вполне существенной. Например, современные цифровые модели обойдутся автолюбителю в 1000 р. Более функциональные модели стоят уже от 1700. Продвинутые стробоскопы стоят порядка 5500 р. Нужно ли говорить, что стробоскоп автомобильный (своими руками сделанный) обойдется автолюбителю в 100-200 рублей.

Часто в заводских устройствах производитель применяет особо дорогую газоразрядную лампу. Лампа имеет определенный ресурс, а через некоторое время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.

Почему стоит делать стробоскоп своими руками?

Недостатки заводских и технологичных устройств подталкивают автолюбителя к самостоятельному изготовлению этого устройства. Кроме того, намного дешевле по стоимости оснастить это оборудование светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обыкновенная лазерная указка или фонарик.

Остальные детали также обойдутся в копейки. Особых инструментов при этом не понадобится. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.

Как сделать стробоскоп своими руками?

Схем и вариантов для изготовления существует огромное количество. Однако в большинстве все проекты по созданию этого гаджета похожи. Давайте посмотрим, что понадобится для сборки.

Нам понадобится простой транзистор КТ315. Его без труда можно найти в старом советском приемнике. Обозначение может слегка отличаться, но это не беда. Тиристор КУ112А можно без проблем добыть из блока питания старинного телевизора. Там же можно найти резисторы небольших размеров. Так как мы делаем светодиодный стробоскоп своими руками, то, естественно, понадобится светодиодный фонарь. Для этого лучше приобрести самый дешевый, из Китая. Кроме этого, нужно запастись конденсатором до 16 В любым низкочастотным диодом, маленьким реле на 12 А, проводами, крокодилами, экранированным проводом 0,5 м длиной, а также небольшим куском медного провода.

Собираем прибор

Схема небольшая, а разместить ее можно прямо в том самом китайском фонаре. Так, через отверстие в фонарике сзади желательно пропустить провода для питания устройства. На концах проводов лучше запаять крокодилы. В боковой стенке нужно проделать отверстие, если его уже не сделали китайцы. Через это отверстие будет проложен экранированный провод. На обратном конце необходимо заизолировать оплетку и припаять тот самый кусок медной проволоки к основной жиле провода. Это будет датчик.

Схема устройства и принцип работы

После подачи тока через провода питания конденсатор очень быстро зарядится через резистор. Когда будет достигнут определенный порог заряда, через резистор напряжение будет поступать на открывающийся контакт транзистора. Здесь сработает реле. Когда реле замкнется, оно создаст цепь из тиристора, светодиода и конденсатора. Затем через делитель импульс попадет на управляющий вывод тиристора. Далее тиристор откроется, а конденсатор разрядится на светодиоды. В результате стробоскоп, своими руками изготовленный, ярко вспыхнет.

Через резистор и тиристор базовыевывод транзистора соединяется с общим проводом. Из-за этого транзистор закроется, а реле отключится. Время свечения светодиодов увеличивается, так как контакт разрывается не сразу. Но контакт разорвется, а тиристор будет обесточен. Схема вернется в базовое положение, пока не поступит новый импульс.

Изменяя емкости конденсатора, можно менять время свечения. Если выбрать конденсатор большей емкости, то светодиодный стробоскоп, своими руками изготовленный, будет ярче и дольше светиться.

Прибор на микросхеме

Основной деталью этой несложной схемы является микросхема типа DD1. Это так называемый одновибратор 155АГ1. В этой схеме он запускается лишь от отрицательных импульсов. Управляющий сигнал поступит на транзистор КТ315, а он сформирует эти отрицательные импульсы. Резисторы 150 К ОМ, 1 К ОМ, 10 К ОМ, а также стабилитрон КС139 работают в качестве ограничителей амплитуды входящего сигнала с зажигания авто.

Конденсатор 0,1 мФ вместе с сопротивлением в 20 КОм зададут нужную длительность импульсов, которые будут сформированы микросхемой. При такой емкости конденсатора длительность импульсов будет примерно до 2 мс.

Затем с 6-й ножки микросхемы импульсы, которые к этому моменту будут синхронизированы с зажиганием машины, попадут на базовый вывод транзистора КТ 829. Он здесь в качестве ключа. Результат - это импульсный ток через светодиоды.

Как запитывается этот стробоскоп для авто? Своими руками нам необходимо провести пару проводов к клеммам автомобильного аккумулятора. Нужно обязательно следить за уровнем заряда АКБ.

Если вы верно соберете эту простую схему, то сразу же сможете увидеть, как работает устройство. Если вдруг яркости недостаточно, то это регулируется подбором соответствующего сопротивления.

В качестве корпуса для устройства можно использовать старый или китайский фонарик.

Еще одна схема стробоскопа

Данный стробоскоп на светодиодах, своими руками изготовленный по такому принципу, также можно запитать от автомобильного аккумулятора. Диоды позволят создать защиту от неправильной полярности. В качестве крепежа здесь применяется обычный крокодил. Его нужно прицепить на высоковольтный контакт первой свечи на моторе. Далее импульс пройдет через резисторы и конденсатор и придет на вход триггера. К тому моменту этот вход уже будет включен одновибратором.

До импульса одновибратор находится в обычном режиме. Прямой выход триггера имеет низкий уровень. Инверсный вход, соответственно - высокий. Конденсатор, присоединенный плюсом к инверсному выходу, зарядится через резистор.

Высокоуровневый импульс запускает одновибратор, что переключает триггер и служит для заряда конденсатора через резистор. Через 15 мс конденсатор полностью зарядится, а триггер переключится в обычный режим.

В итоге одновибратор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью примерно 15 мс. Длительность можно регулировать при помощи замены резистора и конденсатора.

Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, которые представляют собой электронный коммутатор. Затем через светодиоды протекает ток. По этому принципу работает стробоскоп для авто (своими руками изготовленный он был или нет, не имеет значения - оба устройства светят одинаково).

Ток, проходящий через светодиоды, гораздо больший, чем паспортный. Но, так как вспышки недолгие, то светодиоды не выйдут из строя. Яркости будет достаточно, чтобы использовать этот полезный прибор даже в дневное время.

Этот стробоскоп своими руками можно собрать в корпусе от все того же многострадального карманного фонарика.

Как работать с прибором?

Собрав по одной из приведенных схем устройство, можно просто и легко, а главное, точно настраивать зажигание на карбюраторных двигателях, проверять правильность работы свечей и катушек, контролировать работу регуляторов угла опережения.

Чтобы максимально правильно выставить зажигание, обычно исходят из того, что смесь зажигается за пару градусов до того, когда поршень придет в самую верхнюю точку. Этот угол называется "угол опережения". Когда обороты коленчатого вала растут, угол тоже должен увеличиваться. Так, этот угол выставляют на холостых оборотах, а затем необходимо проконтролировать правильность настройки на всех режимах работы агрегата.

Выставляем зажигание

Запускаем и прогреваем двигатель. Теперь запитываем наш стробоскоп на светодиодах и подключаем датчик. Сейчас нужно направить прибор на метку на корпусе ГРМ и отыскать метку на маховике. Если момент нарушен, то метки будут достаточно далеко друг от друга. Методом вращения корпуса ГРМ добейтесь совпадения меток. Когда вы нашли это положение, зафиксируйте трамблер.

Затем пора поднять обороты. Метки разойдутся, однако это вполне нормальная ситуация. Вот так проводится настройка зажигания с использованием стробоскопа.

Итак, мы выяснили, как изготавливается стробоскоп на светодиодах своими руками.

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:

  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

Читайте так же

Стробоскоп для установки зажигания: как пользоваться схемой

Со стробоскопом выставлять зажигание на карбюраторном моторе всегда намного удобнее, чем «на слух». Но ценники на подобную аппаратуру порой «кусаются», что толкает многих автомобилистов к альтернативным вариантам решения подобного вопроса, например путем изготовления стробоскопа своими руками.

Средняя цена фабричного изделия и его недостатки

Заводской вариант прибора имеет некоторые недостатки, которые значительно уменьшают полезность такого приобретения.

На карбюраторах выставлять зажигание всегда удобнее стробоскопом

Во-первых, стоимость фабричных стробоскопов весьма немала. Так цифровая модель Multitronics C2 обойдется покупателю в суму около 900-1000 р. Более функциональный стробоскоп AstroL5 будет стоить уже 1300 р. Focus F1 - модель, подходящая для обслуживания как бензиновых, так и дизельных двигателей - потребует 1700 р. ее более «продвинутый» собрат Focus F10 - 5600 р.

Во-вторых, зачастую производители используют в конструкции своей продукции дорогостоящую газоразрядную лампу. Она имеет ограниченный ресурс и может через непродолжительное время потребовать замены, что не просто ударит по карману, а окажется равносильным покупке нового стробоскопа.

Во сколько обойдется самодельный стробоскоп для регулировки зажигания

Исходя из вышеуказанных недостатков магазинного стробоскопа. выглядит уместным вывод о целесообразности изготовления подобного оборудования в домашних условиях. Тем более, что гораздо удобнее и дешевле его оснастить доступными светодиодами, которые стоят сущие копейки. Для таких целей, в качестве донора, вполне подойдет дешевая лазерная указка, карманный фонарик и т.д.

Точно так же не возникнет проблем с остальными комплектующими, а также инструментами. Общий бюджет затеи не должен составить больше 100-150 рублей.

Видеоурок по настройке зажигания стробоскопом

Как сделать стробоскоп своими руками

Вариантов исполнения «домашнего» стробоскопа может быть множество. Тем не менее, в целом все подобные проекты конструктивно схожи. Рассмотрим принцип сборки сего гаджета на следующем примере.

  • транзистор КТ315 (найти его можно в любой радиоаппаратуре былой эпохи, может иметь различные буквенные индексы);
  • тиристор КУ112А (легко отыскать в импульсном блоке питания древних телевизоров);
  • малогабаритные резисторы мощностью 0,125 Вт;
  • дешевый (китайский) фонарик на диодах (количество диодов может быть разным, но лучше - от 6 до 10 штук);
  • конденсатор C1 под напряжение от 16 Вольт;
  • диод V2 - любой низкочастотный, например КД105 или Д9;
  • малогабаритное реле (индекс BS-115-12A-DC12V или RWH-SH-112D, на 12 Ампер, катушка - 12 Вольт); впрочем, использовать можно и отечественные реле, например типа РЭС-10, с напряжением катушки 12 Вольт;
  • провода питания необходимой длины (около 0,5-0,6 м) и зажимы типа «крокодил» для подключения стробоскопа к аккумуляторной батарее;
  • экранированный провод до 0,5 м, кусок медного провода около 10 см.

Как все подключить, схема стробоскопа

Схема подключения стробоскопа

Все основные детали прибора удобно разместить прямо в корпусе карманного фонарика или обычной фотоаппаратной вспышки. При этом через заднее отверстие фонарика (фотовспышки) проходят провода питания, на концах они имеют припаянные клеммы-крокодилы разных цветов или с маркировкой (чтобы не перепутать «плюс» и «минус»). В боковой стенке корпуса сверлится отверстие (если оно отсутствует) для прокладки через него экранированного провода к контакту X1. Оплетка данного кабеля на конце подлежит изоляции, к основной жиле необходимо припаять кусок медной проволоки длиной около 0,1 м - это датчик стробоскопа.

Работа стробоскопа для установки зажигания из фотовспышки или фонарика

Согласно схеме, после подключения проводов питания к АКБ конденсатор C1 начинает быстро заряжаться через резистор R3. По достижению определенной степени заряда напряжение через резистор R4 и светодиоды начинает поступать на базу открывающегося транзистора. В этот момент должно сработать реле Р1. Замыкаясь, контакт реле готовит цепь, которую составляют тиристор, контакт реле Р1, светодиоды и конденсатор С1. Через делители R1 и R2 на управляющий электрод тиристора поступает импульс от контакта X1.

Имеет место открытие тиристора, в следствие чего происходит быстрый разряд конденсатора через светодиоды. Наблюдается яркая вспышка фонарика.

Посредством резистора R4 и тиристора база транзистора подключается к общему проводу, отчего происходит закрытие транзистора и отключение реле. В то же время период свечения светодиодов увеличивается на несколько миллисекунд благодаря тому, что контакт размыкается не сразу - из-за незначительной инертности и остаточной намагниченности якоря реле. После того, как контакт все же размыкается, тиристор обесточивается. Электрическая схема возвращается в исходное состояние, пока не пройдет новый импульс. Путем изменения емкости используемого конденсатора можно изменять время свечения светодиодов: больше емкость - дольше и ярче светятся, но более заметен шлейф от метки на маховике.

Как пользоваться таким стробоскопом

При помощи изготовленного в гаражных условиях стробоскопа можно легко и с большой точностью:

  • выставить зажигание на карбюраторном моторе;
  • проверить свечу или катушку зажигания;
  • проконтролировать работу центробежного и вакуумного регулятора угла опережения зажигания.

Самодельный стробоскоп дешевле и надежнее

Чтобы момент зажигания был выставлен правильно, необходимо исходить из того, что обычно смесь воспламеняют за пару градусов до момента прихода поршня в верхнюю точку такта. Данный угол и называется «углом опережения зажигания». С ростом оборотов коленвала УОЗ должен также расти по заданной кривой. В результате угол опережения выставляется на холостых оборотах и потом контролируется во всех диапазонах работы двигателя до 5000 об/мин.

При подключении стробоскопа нужно намотать его датчик (медный провод) прямо на оболочку высоковольтного провода первого цилиндра ДВС. Трех-четырех витков хватит. При этом фиксировать провод таким образом необходимо как можно ближе к свече - с целью минимизации влияния на работу стробоскопа соседних проводов. Для питания прибора его провода с «крокодилами» цепляются на выводы аккумуляторной батареи. Также придется для лучшей видимости метку маховика дополнительно обозначить белой точкой - краской или, например, канцелярским штрихом.

  1. Запустите мотор и прогрейте его до рабочей температуры, оставив работать на холостых оборотах в пределах 600-800 об/мин.
  2. Подключите провода питания стробоскопа.
  3. Намотайте медный провод-датчик на бронепровод первого цилиндра.
  4. Направьте фонарик, вспышку, лазер и т.п. на неподвижную метку (находится на корпусе ГРМ).
  5. Затем отыщите так же подвижную точку на шкиве маховика.
  6. При нарушении момента подвижная и статическая метки будут находиться относительно далеко друг от друга.
  7. Путем вращения корпуса распределителя зажигания добейтесь совпадения меток и зафиксируйте трамблер в таком положении.
  8. Далее нужно кратковременно поднять обороты, в результате чего метки снова разойдутся. Но это нормально. В таком режиме зажигание устанавливается более раннее. Для проверки этого показателя предусмотрена пара неподвижных меток - через 5 градусов опережения зажигания.
  9. Для 3 тыс. об/мин УОЗ в случае двигателей ВАЗ - 15-17 градусов.
  10. С целью проверки исправности свечи зажигания поочередно наматывайте медный провод на высоковольтные провода и смотрите, нет ли пропуска импульсов. Меньшая частота вспышек светодиодов укажет на пропуск зажигания, «пробивание» свечи на корпус.

Как выбрать машину Сегодня рынок предлагает покупателям огромный выбор машин, от которого просто разбегаются глаза. Поэтому прежде чем купить автомобиль, стоит учесть много важных моментов. В итоге, определившись с тем, что именно вы хотите, вы.

Какой седан выбрать: Almera, Polo Sedan или Solaris

В своих мифах древние греки рассказывали о существе, имеющем голову льва, туловище козы и змею вместо хвоста. «Крылатая Химера была рождена крохотным созданием. При этом она сверкала красотой Аргуса и ужасала уродством Сатира. Это было.

Они появились в результате генетического моделирования, они синтетические, как одноразовый стаканчик, они практически бесполезные, как пекинесы, но их любят и ждут. Те, кто хочет боевую собаку, заводят себе бультерьера, кому нужна спортивная и стройная, отдают.

Самая дешевая машина в мире – ТОП-5 2016 года

Кризисы и финансовая ситуация не слишком располагают для покупки нового автомобиля, тем более в 2016 году. Только ездить приходится всем, а покупать автомобиль на вторичном рынке готов не каждый. На то есть индивидуальные причины -.

Обзор самых популярных кроссоверов и их сравнение

Сегодня мы будем рассматривать шесть кроссоверов: Toyota RAV4, Honda CR-V, Mazda CX-5, Mitsubishi Outlander, Suzuki Grand Vitara и Ford Kuga. К двум очень свежим новинкам мы решили добавить ещё и дебюты 2015 года, чтобы тест-драйв.

http://avtomotospec.ru

С необходимостью регулировки угла зажигания (УЗ) сталкиваются многие современные автолюбители. Порой эта процедура может вызвать определенные трудности у автомобилиста, поэтому на рынке в последнее время появляется множество устройств для выполнения этой задачи. К примеру, можно использовать стробоскоп для проведения процедуры установки зажигания своими руками, о чем мы расскажем ниже.

[ Скрыть ]

Характеристика стробоскопа

Итак, вы решили произвести настройки зажигания на своем авто, но понятия не имеете, как выставлять и производить регулировку УОЗ. Для того, чтобы выставленный угол не приносил дискомфорта водителю во время езды, можно использовать стробоскоп для зажигания.

Принципиальная схема

Ниже представлена схема стробоскопа. Если вы не знаете, как сделать стробоскоп своими силами на светодиодах, можете воспользоваться этой схемой. В конечном итоге получится самый простой стробоскоп, однако сделанный девайс позволит в полной мере произвести регулировку всех необходимых параметров.

В схеме устройства необходимо выделить несколько основных частей:

  1. Цепь питания, которая состоит из компонентов — SA1, являющегося выключателем, диода VD1, а также конденсатора С2. Сделанная своими руками схема обязательно должна включать в себя диод, предназначенный для защиты остальных компонентов от ошибочной смены полярности. Конденсатор выполняет функцию блокировки импульсных помех, способствуя предотвращению сбоев в работе триггера. Что касается выключателя, то он может быть заменен тумблером, главное, чтобы компонент могу включать и отключать питание.
  2. Самодельный стробоскоп для установки УЗ должен включать в себя входную цепь, состоящую из контроллера, резисторов R1, R2, а также конденсатора С1. Опцию контроллера в данном случае исполняет зажим типа «крокодила», фиксирующийся на высоковольтном кабеле первого цилиндра. Что касается компонентов С1, R1 и R2, то они образуют простую дифференцирующую цепь.
  3. Еще один немаловажный компонент используемого стробоскопа — это плата триггера, которая собирается с применением двух одновибраторов, предназначенных для формирования на выходе сигнала заданной частоты. Конденсаторы и резисторы в данном случае являются частотозадающими компонентами.
  4. Еще одна составляющая — выходной каскад, который собирается на резисторах R5-R9 и транзисторах VT1-VT3. Сами транзисторы предназначены для усиления выходного тока триггера. Резистор R5 позволяет задавать ток базы первого транзистора. А благодаря резистору R9 вероятность сбоев в работе VT3 исключается.

Принцип работы

Итак, в чем заключается принцип работы. Стробоскоп для установки зажигания своими руками в любом случае питается от батареи АКБ. Когда происходит замыкание выключателя, триггер вступает в работу. В это время на инверсных выводах 2 и 12 в соответствии со схемой образуется высокий потенциал, а на прямых выводах 1 и 13 — низкий. Сами конденсаторы С3 и С4 питаются от резисторов.


Сигнал с контроллера, проходя через дифференцирующую цепь, передается на вход DD1.1, который является одновибратором, что в конечном итоге способствует его переключению. Поле этого начинается переразряд С1, заканчивающийся переключением триггера. В конечном итоге, одновибратор начинает реагировать на сигналы с контроллера, образовывая не первом выводе прямоугольные сигналы.

Что касается второго одновибратора DD1.2, то его принцип работы аналогичный — он позволяет снизить длительность сигнала в десять раз на выходе 13. Данный компонент работает под нагрузкой от усилительного каскада транзисторов, открывающихся на время сигнала. Что касается тока, проходящего через эти элементы, то он ограничивается с помощью резисторов R6-R8, его показатель должен быть не более 0.8 ампер.

Этот показатель не особо большой, поскольку:

  • сам сигнал длится не более одной секунды;
  • как правило, эксплуатация данного длится не более десяти минут, соответственно, за столь короткое время вряд ли случится перегрев кристаллов;
  • современные диоды характеризуются более оптимальными техническими особенностями по сравнению с теми, которые использовались в конструкциях стробоскопов десять лет назад.

Соответственно, эксплуатация более ярких диодных элементов даст возможность во многом понизить ток нагрузки в результате повышения показателя сопротивления. Это сопротивление увеличивается на компонентах схемы R6-R8.

Печатная плата и детали сборки


Собрать свой собственный стробоскоп — не проблема. При небольшом бюджете можно использовать недорогие детали, не при необходимости вы можете создать более современное устройство.

  1. На приведенной выше плате в качестве диодного элемента VD1 используется КД2999В, можно применять другой, в этом случае важно, чтобы диод был с небольшим падением прямого напряжения.
  2. Конденсаторные устройства С2-С4 должны быть рассчитаны на 0.068 мкФ, а С1 — это высоковольтный компонент с напряжением 400 вольт.
  3. ТМ2 — это триггер, характеризующийся хорошей устойчивостью к помехам.
  4. Транзисторные компоненты VT1 и VT2 должны обладать высоким коэффициентом усиления.
  5. Диодные детали HL1-HL9 должны обладать наибольшей яркостью, при этом их угол рассеивания должен быть минимальным. Светодиоды необходимо установить на отдельной плате, при этом их должно быть три штуки в одном ряду.

После того, как плата для устройства будет готова, необходимо выбрать место для ее установки. К примеру, это может быть корпус переносного фонаря, но он должен быть оснащен отверстием в корпусе для монтажа регулятора R4. В принципе, можно использовать практически любой корпус, главное, чтобы на него можно было без проблем установить регулятор. Подробнее о том, как выглядит самодельный стробоскоп для настройки зажигания, сделанный на основе лазерной указки, вы можете узнать из видео (автор видео — Максим Соколов).

Особенности настройки устройства

Чтобы пользоваться девайсом, его необходимо отрегулировать. Стробоскоп для настройки должен быть отстроен должным образом, чтобы выдавать наиболее точные параметры. В первую очередь, производится регулировка подстроечного резистора R4, что позволяет выставить необходимый визуальный эффект. При вращении ручки регулятора вы заметите, что снижение сигнала может привести к недостаточному освещению меток, а если сигнал будет увеличен, то это приведет к размытости. Соответственно, в ходе первой настройки угла опережения зажигания своими руками следует правильно настроить наиболее оптимальную длительность световых вспышек.

Есть еще один момент, который необходимо учитывать — длина кабеля, который проходит от печатной платы к контроллеру, должна быть не более полуметра. Для контроллера можно использовать 10 см медного проводника, который следует припаять к центральной жиле кабеля. Когда осуществляется подключение, он наматывается на изолированную часть высоковольтника тремя витками.

Чтобы увеличить уровень помехозащищенности, процедура намотки осуществляется как можно ближе к самой свече зажигания. Если меди у вас нет, то можно использовать зажим крокодил — этот компонент припаивается к центральной жиле. При этом зубчики крокодила должны быть немного загнуты, в противном случае это может привести к повреждению изоляции.

– это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.

Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя. Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени. Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания .

При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.

Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов. Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.

Электрическая схема стробоскопа

Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.


Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.

Принцип работы

Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В. Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8. Индуктивный датчика момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.

Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В. Микросхема TL494 применяется практически во всех компьютерных блоках питания , выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.

С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2. С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.

Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.

Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече. В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение. Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7. Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.

Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.

Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.

Конструкция и детали

Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.


Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.


Все детали стробоскопа, кроме лампы, собраны на печатной плате , представленной на фотографии.

Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка. Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков. Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.

Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500. Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига. Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца. После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.

Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.

Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.

К аккумулятору стробоскоп подключается с помощью двух зажимов типа «крокодил». Для безошибочного подключения на крокодилах нанесена маркировка полярности.

Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.

В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.

Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой .

Настройка стробоскопа

Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9. Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы. Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход. Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.

Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.

Как пользоваться стробоскопом

Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу. Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.

Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.

Ответы на вопросы посетителя сайта по настойке стробоскопа

Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверх ярких светодиодов его остановила цена светодиодов. При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки. Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.

Вопрос Ответ
Можно ли заменить тиристор КУ103В тиристором ВТ169G? Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В.
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме.
Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен.
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов.
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 - 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость оставить? По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать.
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы.
Из характеристик тиристора BT169G - отпирающее управляющее напряжение 0,5-0,8 В, т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? Да.
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В.
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? Не играет, диод для этого и стоит.
Есть ли смысл заменить VT10 на полевой транзистор? В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять.
Изменения, которые внес Юрий при повторении схемы стробоскопа. Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ.

Отзыв Юрия о работе стробоскопа сделанного своими руками: «Работа стробоскопа проверена на автомобиле, работает отлично, яркость вспышки великолепная!!!»