Момент по часовой стрелке знак. Правила знаков для поперечной силы и изгибающего момента. Момент силы относительно оси


Теоретическая механика. Статика :

Система сходящихся сил
Определение и теорема о трех силах
Графическое определение равнодействующей сходящихся сил
Аналитическое задание силы
Аналитическое определение равнодействующей сходящихся сил
Условия и уравнения равновесия системы сходящихся сил
Решение задач
★ Равновесие под действием сходящейся системы сил

Теория пар сил

Пара сил и ее свойства
Теоремы об эквивалентности пар
Сложение пар сил
Равновесие систем пар

Приведение плоской системы сил
Лемма Пуансо
Теорема о приведении плоской системы сил
Частные случаи приведения плоской системы сил
Уравновешенная система сил

Определение опорных реакций плоских стержневых систем
★ Равновесие под действием системы параллельных сил на плоскости
Система параллельных сил
Произвольная плоская система сил
Произвольная плоская система сил. РГР 1
★ Равновесие плоской произвольной системы сил
Расчет составных систем
Расчет составных систем. РГР 2
★ Равновесие системы тел 1
★ Равновесие системы тел 2
★ Равновесие системы тел 3
Графическое определение опорных реакций

subjects:termeh:statics:момент_силы_относительно_центра

Рассмотрим тело, которое закреплено в центре О и может поворачиваться вокруг оси, проходящей через точку О и перпендикулярной к плоскости чертежа. Приложим в точке А этого тела силу P и выясним, чем определяется вращательное действие этой силы (Рис.1 ).

Очевидно, что воздействие силы на тело будет зависеть не только от ее величины, но и от того, как она направлена, и в конечном итоге будет определяться ее моментом относительно центра О .

Определение 1. Моментом силы Р относительно центра О называется взятое со знаком $\pm$ произведение модуля силы на ее плечо – то есть длину перпендикуляра, опущенного из моментной точки на линию действия силы.

Правило знаков: момент силы считается положительным, если сила стремится повернуть тело против хода часовой стрелки и отрицательным, если она вращает тело по ходу часовой стрелки.

В соответствии с данным определением момент силы численно равен удвоенной площади треугольника OAB, построенного на векторе силы P с вершиной в моментной точке: $M_0(P) = P\cdot d = 2S\Delta_{OAB}$ .

Отметим, что момент силы относительно точки О равен нулю, если линия действия силы проходит через моментную точку .

Рассмотренное определение момента силы подходит только для плоской системы сил. В общем случае для однозначного описания вращательного действия силы введем следующее определение.

Определение 2. Вектор-моментом силы Р относительно центра О называется вектор, который:

    приложен в моментной точке О перпендикулярно к плоскости треугольника, построенного на векторе силы с вершиной в моментной точке ;

    направлен по правилу право винта ;

    равен по модулю моменту силы Р относительно центра О ( Рис.1а ).

Правило правого винта , известное также из курса физики как правило буравчика , означает, что если смотреть навстречу вектор-моменту $\vec{М_0}(\vec{P})$ , мы увидим вращение силой $\vec{P}$ плоскости своего действия, происходящим против хода часовой стрелки .

Обозначим через $\vec{r}$ радиус-вектор точки приложения силы $\vec{P}$ и докажем, что справедлива следующая

Теорема 1. Вектор-момент силы $\vec{P}$ относительно центра О равен векторному произведению радиус-вектора $\vec{r}$ и вектора силы $\vec{P}$ :

$$\vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P})$$

Напомним, что векторным произведением векторов $\vec{a}\text{ и }\vec{b}$ называется вектор $\vec{c}$ , который (Рис.2б ):

    перпендикулярен к векторам $\vec{a}\text{ и }\vec{b}$ ;

    образует с ними правую тройку векторов, то есть, направлен так, что, смотря навстречу этому вектору, мы увидим поворот от вектора $\vec{a}$ к вектору $\vec{b}$ на наименьший угол происходящим против хода часовой стрелки;

    равен по модулю удвоенной площади треугольника, построенного на этих векторах:

$$|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}|\cdot|\vec{b}|\cdot\sin(\vec{a},\,\vec{b})$$

Для доказательства теоремы отметим, во-первых, что вектор, равный векторному произведению векторов $\vec{r}\text{ и }\vec{P}$ будет коллинеарным вектору $\vec{M_0}(\vec{P})$.

Чтобы убедиться в этом, достаточно отложить эти векторы от одной точки (Рис.1в ). Итак, $(\vec{r} \times \vec{P}) \uparrow \uparrow \vec{M_0}(\vec{P})$.

Во-вторых, модуль векторного произведения этих векторов будет равен:

$$|\vec{r} \times \vec{P}| = |\vec{r}|\cdot|\vec{P}|\cdot\sin(\vec{r},\,\vec{P}) = P \cdot d =|\vec{M_0}(\vec{P})|$$

Откуда и следует соотношение теоремы.

Следствием этой теоремы является:

Теорема Вариньона (о моменте равнодействующей сходящихся сил). Вектор- момент равнодействующей системы сходящихся сил относительно произвольного центра О равен геометрической сумме вектор-моментов всех сил системы относительно этого центра:

$$\vec{M_0}(\vec{R}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i})$$

В самом деле, момент равнодействующей, с учетом теоремы 1 и аналитического определения равнодействующей сходящихся сил , будет равен:

$$ \vec{M_0}(\vec{R})= \vec{R}\times\vec{r} \,\,\,\;\;\text{ , т.к. } \vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P}) \\ \vec{R}\times\vec{r}= \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} \,\,\,\;\;\text{ , т.к. } (\vec{P_1}, \vec{P_2}, \dots, \vec{P_n}) \sim \vec{R} = \sum_{i=1}^{i=n} \vec{P_i} \\ \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} = \sum_{i=1}^{i=n}(\vec{r}\times\vec{P_i}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i}) $$

Для плоской системы сходящихся сил геометрическая сумма в теореме Вариньона переходит в алгебраическую:

$$M_0(R)=\sum_{i=1}^{i=n}M_{0\,\,i}(\vec{P_i})$$

Примечание

    В учебной литературе термин «момент» применяют для обозначения как момента силы, так и ее вектор-момента.

subjects/termeh/statics/момент_силы_относительно_центра.txt · Последние изменения: 2013/07/19 19:53 - ¶

В механике существует понятие о моменте силы относительно точки.

Моментом силы относительно точки называется взятое со знаком (плюс или минус) произведение модуля силы на кратчайшее расстояние от точки до линии действия силы (рис. 12), т. е.

М 0 ()= ± P h.

Точка О, относительно которой берется момент силы, называется центром момента; ОВ = h -крат­чайшее расстояние от центра момента до линии действия силы - называется плечом силы относи­тельно данной точки; знак плюс ставится в случае, если сила стремится повернуть плечо h против хода часовой стрелки, а знак минус - в противоположном направлении. Момент силы относительно точки О на рис. 12 положительный.

Из последнего равенства следует, что при h =0, т.е. когда О- центр моментов– расположен на линии действия силы , М 0 () =0. Как известно, сила-скользящий вектор, поэтому при переносе силы по линиям действия из точки А в любую другую точку A 1 , А 2 и т. д. (рис. 12) длина плеча не изменится, а значит не изменится и значение момента силы относительно точки. Момент силы, как и момент пары, измеряют в ньютонометрах.

Рис.12. Момент силы относительно точки O .

1.12. Уравнения равновесия плоской системы параллельных сил

Пусть к данному телу приложена система параллельных сил , , , , (рис. 13). Через произвольную точку О, взятую в плоскости дей­ствия сил, проведем ось Ох, перпендикулярную силам, и ось Оу, параллельную этим силам. Запишем для данной системы сил уравнения равновесия

Рис.13. Система параллельных сил.

Каждая сила перпендикулярна оси Ох, и ее проекция на эту ось равна нулю. Следовательно, первое уравнение обращается в тождество 0 = 0 и выполняется независимо от того, уравновешиваются силы или нет. Таким образом, для плоской системы параллельных сил остается только два уравнения равновесия, причем на ось Оу силы проецируются в натуральную величину, так как эта ось па­раллельна заданным силам.

Система уравнений равновесия для плоской системы параллельных сил принимает вид

Уравнения равновесия для плоской системы параллельных сил можно записывать в виде

Точки А и В –произвольные точки, предпочтительно их взять на оси х, уравнение =0 служит для проверки правильности вычислений.

Итак, для произвольной плоской системы сил мы имеем три уравнения равновесия, а для плоской системы парал­лельных сил только два уравнения равновесия. Соответ­ственно при решении задач на равновесие произвольной плоской системы сил можно найти три неизвестных, а при рассмотрении равновесия плоской системы парал­лельных сил - не более двух.

Если количество неизвестных превышает число урав­нений статики, задача становится статически неопреде­лимой.


1.13. Типы опор балок

В машинах и сооружениях очень часто встречаются тела удлиненной формы, называемые балками. Они в основном предназначены для восприятия поперечных нагрузок. Балки имеют специальные опорные устройства для сопряжения с другими элементами и передачи на них усилий. Опоры балок, рассматриваемых как плоские системы, быва­ют трех основных типов.

· Подвижная шарнирная опора (рис. 14, а) . Такая опора не препятствует вращению конца балки и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и прохо­дит через центр катка.

Схематическое изображение подвижной шарнирной опоры дано на рис. 14, б.

Рис. 14. Типы опор балок.

Подвижные опоры дают возможность балке беспрепятствен­но изменять свою длину при изменении температуры и тем самым устраняют возможность появления температурных на­пряжений.

· Неподвижная шарнирная опора (рис. 14, в ). Такая опора допускает вращение конца балки, но устраняет поступа­тельное перемещение ее в любом направлении Возникающую в ней реакцию можно разложить на две составляющие - гори­зонтальную и вертикальную

· Жесткая заделка, или защемление (рис. 14 , г). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (ре­активный момент).

Балка с одним заделанным концом называется консольной балкой или просто консолью.

Если опорные реакции могут быть найдены из одних уравне­ний статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, возможных для данной задачи, то балки называют статически неопределимыми.

Пример.

Определить неизвестные параметры реакций опор А и В для заданной (рис.15) конструкции балки, нагруженной параллельными силами и .

Действие одной силы или системы сил на твёрдое тело может быть связано не только с поступательным, но и с вращательным движением. Как известно, силовым фактором вращательного движения является момент силы.

Рассмотрим гайку, которую затягивают гаечным ключом определённой длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то, прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы .

Понятие момента силы относительно точки ввёл в механику итальянский учёный и художник эпохи Возрождения Леонардо да Винчи.

Моментом силы относительно точки называется произведение модуля силы на ее плечо (рис. 5.1):

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Единица момента силы в системе СИ:

[М] = [Р] · [h] = сила длина = ньютон метр = Н м .

Рис. 5.1. Момент силы относительно точки

б )

Рис. 6.1

Понятие пары сил введено в механику в начале XIX в. французским учёным Пуансо, который разработал теорию пар. Рассмотрим основные понятия.

Любые две силы, кроме сил, образующих пару, можно заменить равнодействующей. Пара сил не имеет равнодействующей, и никакими способами пару сил нельзя преобразовать к одной эквивалентной силе. Пара – такой же самостоятельный простейший механический элемент, как и сила.

Плоскость, в которой лежат силы, образующие пару, называют плоскостью действия пары . Кратчайшее расстояние между линиями сил, образующих пару, называют плечом пары h . Произведение модуля одной из сил пары на её плечо называют моментом пары и обозначают

М = ± Ph . (6.1)

Действие пары на тело характеризуется моментом, стремящимся вращать тело. При этом, если пара сил вращает тело против часовой стрелки, то момент такой пары считается положительным, если по часовой стрелке, то момент считается отрицательным.

Свойства пар

Не изменяя действия на тело, пару сил можно:

1) как угодно перемещать в её плоскости;

2) переносить в любую плоскость, параллельную плоскости действия этой пары;

3) изменять модуль сил и плечо пары, но так, чтобы ее момент (т. е. произведение модуля силы на плечо) и направление вращения оставались неизменными;

4) алгебраическая сумма проекций сил, образующих пару, на любую ось равна нулю;

5) алгебраическая сумма моментов сил, образующих пару, относительно любой точки постоянна и равна моменту пары.

Две пары считают эквивалентными, если они стремятся вращать тело в одну сторону и их моменты численно равны. Пару может уравновесить только другая пара с моментом, имеющим противоположный знак.

Сложение пар

Система пар, лежащих в одной плоскости или параллельных плоскостях, эквивалентна одной равнодействующей паре , момент которой равен алгебраической сумме моментов слагаемых пар, т. е.

Равновесие пар

Плоская система пар находится в равновесии, если алгебраическая сумма моментов всех пар равна нулю, т. е. .

Часто бывает удобным представить момент пары в виде вектора. Вектор-момент пары направлен перпендикулярно к плоскости действия пары в сторону, откуда вращательное действие пары наблюдается против часовой стрелки (рис. 6.2).

Рис. 6.2. Вектор-момент пары сил

Пример 7. На балку, свободно опирающуюся на гладкий уступ А и шарнирно укреплённую в точке В, действует пара с моментом М = 1500 Нм. Определить реакции в опорах, если l = 2 м (рис. 6.3, а ).

Решение . Пару может уравновесить только другая пара с равным, но противоположно направленным моментом (рис. 6.3, б ). Следовательно,

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.

Составляя сумму моментов, мы используем правило знаков термеха: против часовой стрелки «+», по часовой стрелке «-». Это не формулировка, но так гораздо проще запомнить.

У многих встречается проблема: как понять в какую сторону сила вращает конструкцию?

Вопрос не очень сложный и если знать некоторые хитрости - довольно легкий в понимании.

Начнем с простого, у нас есть схема

И для примера нам нужна сумма моментов относительно точки А.

Будем идти по порядку слева на право:

Ra и Ha не дадут момента, так как они действуют в точке А и у них к этой точке не будет плеча.

Это пример: зеленая линия - линия силы Ra, желтая - На. К точке А нету плеч, т.к. она лежит на линиях действия этих сил.

Продолжим: момент, возникающий в жесткой заделке Ма. С моментами довольно просто, в какую сторону он направлен разберется любой, в данном случае он направлен против часовой стрелки.

Сила от распределенной нагрузки Q направлена вниз с плечом 2,5 . Куда же она вращает нашу конструкцию?

Отбросим все силы, кроме Q. Помним, что в точке А у нас забит «гвоздь».

Если представить, что точка А - центр циферблата часов, то видно, что сила Q вращает нашу балку по часовой стрелке, а значит знак будет «-».

Точка А - центр циферблата и F вращает балку против часовой стрелки, знак будет «+»

С моментом все понятно, он направлен против часовой стрелки, а значит вращает балку в ту же сторону.

Бывают другие моменты:

Дана рама. Нам нужно составить сумму моментов относительно точки А.

Рассматриваем только силу F, не трогаем реакции в заделке.

И так, в какую сторону сила F вращает конструкцию относительно точки А?

Для этого, как и раньше мы проводим из точки А оси, а для F - линию действия силы

Теперь все видно и понятно - конструкция вращается по часовой стрелке

Таким образом, проблем с направлением быть не должно.