Однокаскадный усилитель на биполярном транзисторе принцип работы. Однокаскадные усилители на биполярных транзисторах. Усилители на биполярных транзисторах

Лабораторная работа

"Однокаскадный усилитель низкой частоты"

Полянчев С., Коротков Р.

Цель работы : Изучение схемы резистивно-ёмкостного усилительного каскада на биполярном транзисторе и экспериментальное определение основных характеристик усилителей.

Теоретическая часть.

    Основные характеристики усилителей

Усилитель осуществляет увеличение энергии управляющего сигнала за счёт энергии вспомогательного источника. Хотя в любом усилителе происходит усиление мощности сигнала, на практике выделяют три группы усилителей: напряжения, тока и мощности. В соответствии с этим делением различают коэффициенты усиления по направлению, по току и по мощности.

Коэффициент усиления по напряжению или, ещё говорят, коэффициент передачи напряжения K u – это отношение выходного напряжения

Ъ вых =U вых усилителя к его входному напряжению Ъ вход =U вход
:

K u =
=
=K u e jφ ,

где K u =
- называют амплитудно-частотной характеристикой усилителя, а φ(ω)=φ 2 -φ 1 – фазово-частотной характеристикой.

Аналогично вводятся коэффициенты усиления по току и по мощности:

K I =
; K P =
.

Одной из важных характеристик усилительного каскада является его амплитудная характеристика: зависимость амплитуды выходного сигнала от амплитуды входного сигнала. На рис.1 приведены частотная (а), фазовая (б) и амплитудная (в) характеристики идеального (пунктирная кривая) и реального (сплошная линия) усилителей.

На рис. 1а Δω=ω B -ω H называется полосой пропускания усилительного каскада.

Усилительный каскад является элементом некоторой радиотехнической схемы – ко входу усилителя подключается источник сигнала, а к выходу – нагрузка. Для согласования усилителя с названными элементами, а также для анализа работы каскада необходимо знать входное и выходное сопротивление усилителя.

Входным сопротивлением усилителя называется сопротивление между его входными зажимами при воздействии усиливаемого сигнала, т.е.

Z вх =, аналогично выходное сопротивление каскада Z вых =
.

2. Задание режима работы транзистора по постоянному току фиксированным током базы в схемах с общим эмиттером

Схема однокаскадного усилителя, пригодного для практического применения, приведена на рис.2.

Конденсаторы с 1 и с 2 служат для разделения по постоянному току усилителя и источника сигнала. Сопротивления R б и R к требуются для создания необходимых постоянных напряжений между электродами транзистора. При этом абсолютные значения напряжений на том или ином выводе, как правило, не играют существенной роли, важны лишь относительные значения. Только после создания требуемых постоянных напряжений между отдельными электродами транзистора или, как говорят, режима схемы по постоянному току, возможна нормальная работа усилительного каскада.

Для выбора режима работы транзистора необходимо знать семейство его выходных характеристик, т.е. зависимость тока коллектора I к от напряжения эмиттер-коллектор U эк, для различных фиксированных значений тока базы I б. Потребуется, также, величина коэффициента передачи тока базы для выбранного транзистора:

β=
.

На рис.3 приведено семейство выходных вольтамперных характеристик (ВАХ) транзистора и нагрузочная прямая.

Точки пересечения нагрузочной прямой, уравнение которой задаётся выбором E и R к, определяют постоянные токи и напряжения в схеме для фиксированного тока базы. На рис.3 выбранные величины помечены звёздочками. Точка B носит название рабочей точки. В окрестности этой точки будут происходить изменения напряжений и токов при подаче на вход усилителя переменного сигнала.

Выбор рабочей точки диктуется получением минимальных нелинейных искажений и максимального динамического диапазона усиления входного сигнала.

Величина напряжения источника питания E определяется заданным значением переменной составляющей U вых. Так как U вых =U 0вых cosωt, то должно быть E>2 U 0вых. Сверху величина напряжения источника питания ограничивается предельно-допустимым значением U кэ max > E ≥ (2U 0вых +1).

Выбор R к должен быть сделан так, чтобы рабочий участок нагрузочной прямой не попадал в область недопустимо больших мощностей рассеяния и область электрического пробоя. После того, как выбор F и R к произведён, следует с помощью сопротивления R б зафиксировать ток базы I б *, чтобы рабочей точкой была точка B, удовлетворяющая, как видно из рис.3, требованию минимальных нелинейных искажений и максимального динамического диапазона усилителя. Точке B соответствует U кэ *= и I к *=
. Найдём значение R б необходимое для выбранного режима работы транзистора. Эмиттерный переход включен в прямом направлении, коллекторный в обратном.

Обычно в схемах с ОЭ на маломощных биполярных транзисторах U бэ составляет десятые доли вольта при значениях E единиц вольта, поэтому с большой точностью можно считать

I б =.

Так как I к =β I б, то

R б ==
=
=2βR к.

Окончательно R б =2βR к, видно, что R б зависит от параметра транзистора β.

Схема с фиксированным током базы требует минимум деталей и отличается малым потреблением тока от источника питания, так как R б – велико.

Однако, из-за разброса параметров транзисторов (β) при смене транзистора приходится пересчитывать и R б. Другим существенным недостатком является низкая температура стабильности схемы.

Введение в цепь Эмиттера небольшого по величине сопротивления R э, R э) и позволяет довольно просто производить регулировку величин: R вх (увеличивается при введении R э), K U и K p (уменьшаются при введении R э). Положение рабочей точки практически не меняется (если R э

3. Обратные связи в усилителях

Связь, обеспечивающая возвращение части энергии сигнала с выхода усилителя на его вход, называется обратной связью (ОС). Структурная схема усилителя с ОС имеет вид:

Здесь К – усилитель с коэффициентом усиления К; ж – цепь обратной связи; U x – напряжение обратной связи; U г – входной сигнал; U вх – напряжение, управляющее транзистором.

Та часть схемы, которая из U г и U x вырабатывает U вх, называется суммирующим узлом.

Коэффициентом обратной связи называют отношение:

ж=
.

Если фазы входного сигнала и напряжения обратной связи совпадают, то такая ОС называется положительной, если фазы названных напряжений противоположны – отрицательной. В усилителях реализуется отрицательная обратная связь. Рассмотрим влияние обратной связи на коэффициент усиления усилителя. По определению,

K=; K ОС =
; ж=.

Используя эти определения, можно записать следующую цепочку равенств

=к(U г +U ж)=к(U г + жU вых).

Откуда следует

U вых (1-кж)=кU г

Величину (1- кж) называют глубиной обратной связи.

Из последнего равенства следует, что при отрицательной обратной связи к=-кж и K ОС =
, т.е., отрицательная обратная связь уменьшает коэффициент усиления.

Практическая часть

Задание 1: Исследовать амплитудную характеристику усилителя U вых = f(U вх).

R к = 1 кОм; R э = 100 Ом; R 1 = 10 кОм; R 2 = 750 Ом; С р = 1 мкФ; f = 1 кГц.

Таблицы для графика:

График 1. Зависимость U вых от U вх для усилителя

Задание 2: Исследовать зависимость коэффициента усиления К ус от частоты для усилителя.

1) Без конденсатора.

Таблицы для графика:

2) C конденсатором (С Э = 10 мкФ)

Таблицы для графика:

График 2. Зависимость Кус от f с конденсатором (сверху) и без конденсатора (снизу)

Задание 3: Исследовать зависимость коэффициента усиления от величины сопротивления R Э для средней частоты (f = 1 кГц).

Таблица для графика:

График 3. Зависимость К ус от R Э

График 4. Зависимость К ус от R К

Вывод: в данной работе мы ознакомились с принципом построения RC-усилительного каскада, его основными характеристиками и назначением элементов. Были подробно разобраны эквивалентные схемы транзистора и усилителя. Получены основные характеристики транзисторного НЧ-усилителя. Исследовалось влияние сопротивлений эмиттера и коллектора на коэффициент усиления. Расхождений с теорий не наблюдается.

Литература

1. В.Н.Ушаков. ”Основы радиоэлектроники и радиотехнические устройства”. М., «Высшая школа», 1976.

2. Е.И. Манаев. “Основы радиоэлектроники”. М., «Радио и связь», 1985.

Типичная схема усилительного каскада на транзисторе с ОЭ показана на рис.11.5. Входное усиливаемое переменное напряжение UВХ подводится ко входу транзистора через разделительный конденсатор СР1. Конденсатор СР1 препятствует передаче постоянной составляющей напряжения входного сигнала на вход усилителя, которая может вызвать нарушение режима работы по постоянному току транзистора VT. Усиленное переменное напряжение, выделяемое на коллекторе транзистора VT, подводится к внешней нагрузке с сопротивлением RН через разделительный конденсатор СР2. Этот конденсатор служит для разделения выходной коллекторной цепи от внешней нагрузки по постоянной составляющей коллекторного тока IК0. Значения IК0 и других постоянных составляющих тока и напряжений в цепях транзистора зависят от начального режима работы (начального положения рабочей точки), задаваемого при отсутствии сигнала.

Рис.11.5. Усилитель на биполярном транзисторе с ОЭ

Рабочей точкой транзистора называют точку пересечения динамической характеристик (нагрузочной прямой) с одной из статических вольт-амперных характеристик. Это положение определяется на характеристиках совокупностью постоянных составляющих токов и напряжений в выходной IК0, UКЭ0 и входной IБ0, UБЭ0 цепях.

Работа усилительного каскада поясняется рис.11.6.

Рис.11.6. Графическая иллюстрация работы усилительного каскада на транзисторе с ОЭ

Процесс усиления сигнала можно отразить следующей взаимосвязью электрических величин:

UВХm→IБm→IКm→IКmRК→(UКЭm= ЕПИТ - IКmRК) = UВЫХm.

Рисунок показывает, что напряжение входного сигнала с амплитудой UВХm =UБЭmсинфазно изменяет величину тока базы. Эти изменения базового тока вызывают в коллекторной цепи пропорциональные изменения тока коллектора и напряжения на коллекторе, причем амплитуда коллекторного напряжения оказывается значительно больше амплитуды напряжения на базе. Напряжения сигнала на входе и выходе каскада сдвинуты между собой по фазе на 180º, т.е. находятся в противофазе. При работе транзистора в активном (усилительном) режиме рабочая точка должна находиться примерно посредине отрезка АВ нагрузочной прямой. Предельные изменения входного тока базы должны быть такими, чтобы рабочая точка не выходила за пределы отрезка АВ. На рис.11.7 показаны временные диаграммы работы транзисторного каскада при правильном выборе точки покоя и величины входного сигнала. Очень важно обеспечить правильно не только величину входного сигнала, но и ток покоя. При малом начальном токе покоя при минимальном сигнале транзистор не откроется и будет находиться в режиме отсечки, при большом смещении и высоком уровне сигнала он может попасть в насыщение. Рис. 11.8. показывает напряжение на коллекторе транзистора: а - при недостаточном токе смещении; б - при избыточном токе смещения; в - при чрезмерном входном сигнале.

Рис.11.7. Временные диаграммы работы транзисторного усилителя в схеме с ОЭ

Начальное положение рабочей точки обеспечивается делителем напряжения, состоящим из резисторов R1и R2, значения сопротивлений которых определяют из соотношений: R1 = (EK - UБЭ0 - URЭ) / (IД + IБ0); R2 = (UБЭ0 + URЭ) / IД, где IД = (2…5) IБ0 - ток в цепи делителя.

При обеспечении режима работы транзистора необходимо осуществить температурную стабилизацию положения рабочей точки (уменьшить влияние температуры на начальное положение рабочей точки). С этой целью в эмиттерную цепь введен резистор RЭ, на котором создается напряжение ООС по постоянному току URЭ.

Рис.11.8. Временные диаграммы коллекторного напряжения при неправильных режимах

ООС в данной схеме действует следующим образом: при изменении, например, температуры транзистора увеличивается ток коллектора. Это вызывает соответствующее увеличение тока эмиттера и падения напряжения на нем. Следовательно, напряжение UБЭ = UБ - UЭ, которое является управляющим для транзистора, уменьшается, транзистор подзапирается, ток коллектора уменьшается и возвращается в заданный режим. Введение ООС уменьшает коэффициент усиления схемы. Для того, чтобы обратная связь действовала только по постоянному току и для устранения ООС по переменному току резистор RЭ шунтируют конденсатором СЭ, сопротивление которого на частоте усиливаемого сигнала должно быть незначительным. При анализе схемы можно считать, что ООС по переменному току отсутствует. В таком случае коэффициент усиления каскада по току

В усилителях на биполярных транзисторах используется три схемы подключения транзистора:с общей, с общим эмиттером, с общим коллектором.

В схеме включения транзистора с общим эмиттером усилитель обеспечивает усиление по напряжению, по току, по мощности. Такой усилитель имеет средние значения входного и выходного сопротивления по сравнению со схемами включения с общей базой и общим коллектором.

Параметры транзистора в значительной степени зависят от температуры. Изменение температуры окружающей среды приводит к изменению рабочего режима транзистора в простой схеме усилителя при включении транзистора с общим эмиттером.

Для стабилизации режима работы транзистора при изменении температуры используют схемы эмиттерной стабилизации режима работы транзистора.

На рисунках 5.14 и 5.15 приведены схемы однокаскадных усилителей на биполярных транзисторах n-p-n и p-n-p типов с эмиттерной температурной стабилизацией режима работы транзистора.

Проследим цепи, по которым протекают постоянные токи в усилителе по схеме рисунка 5.14. Постоянный ток делителя напряжения протекает по цепи: плюс источника питания, резисторы R1, R2, минус источника питания. Постоянный ток базы транзистора VT1 протекает по цепи: плюс источника питания, резистор R1, переход база-эмиттер транзистора VT1, резистор Rэ, минус источника питания. Постоянный ток коллектора транзистора VT1 протекает по цепи: плюс источника питания, резистор RК, выводы коллектор-эмиттер транзистора, резистор Rэ, минус источника питания. Биполярный транзистор в составе усилителя работает в режиме, когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор - в обратном. Поэтому постоянное напряжение на резисторе R2 будет равно сумме напряжения на переходе база-эмиттер транзистора VT1 и напряжения на резисторе Rэ:UR2=Uбэ+URэ. Отсюда следует, что постоянное напряжение на переходе база-эмиттер будет равноUбэ= UR2 - URэ.

Читайте также:
  1. B)Следующие слова употребляются по такому же принципу:hospital university school church
  2. F) содействовать разработке руководящих принципов или руководств, касающихся насилия в отношении женщин, принимая во внимание меры, упомянутые в настоящей Декларации;
  3. I. Государственный стандарт общего образования и его назначение
  4. I. Первый (и главным) принцип оказания первой помощи при ранениях является остановка кровотечения любым доступным на данный момент способом.
  5. I. Функции государства - это основные направления его деятельности, в которых выражаются сущность и социальное назначение государства в обществе.
  6. II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  7. II. Получение вращающегося магнитного поля и принцип действия АД.
  8. II. Принципы разработки учебно-методического комплекса дисциплины (УМКД)

В схеме включения транзистора с общим эмиттером усилитель обеспечивает усиление по напряжению, по току, по мощности. Такой усилитель имеет средние значения входного и выходного сопротивления по сравнению со схемами включения с общей базой и общим коллектором.

В режиме покоя, т.е. при отсутствии входного сигнала (U вх = 0), постоянный ток I БО под действием Е К проходит по цепи + Е К – Э- Б- R Б - -Е К. Величина этого тока подбором значений R Б задается такой, чтобы транзистор был полуоткрыт, т.е. напряжение на нем составляло бы примерно половину E К. В свою очередь, при большом токе базы транзистор полностью открывается, т.е. его сопротивление между эмиттером и коллектором очень мало, напряжение U ЭК почти нулевое, а при I Б = 0 транзистор полностью закрыт, т.е. сопротивление велико и он практически не пропускает ток I К.

Конденсатор С р1 служит для включения источника переменной входной ЭДС Е вх, с внутренним сопротивлением R вх в цепь базы. Конденсатор связи С р2 служит для выделения на нагрузке R н переменной составляющей коллекторного напряжения.


18. Определение начальных условий, обеспечивающих заданный режим работы усилителя с ОЭ

Рассмотрим RC-усилитель в котором транзистор вклю­чен до схеме с общим эмиттером и используется эмиттерная стабилизация начального, режима работы.

Токи в цепи находят по формулам:

Предположим, что i Б = i Б2 , тогда:

Предположим, что напряжение питания Ек задано и требуется обеспечить начальный режим работы при задан­ном начальном токе I К Н.

Учитывая, что i Э » i K:

Выбирается ток i дел делителя напряжения на резисторах R 1 и R 2 , протекающий при отключении базы транзистора от делителя.

Важным параметром является коэффициент усиления усилителя по напряжению, который находят по формуле:

19. Операционные усилители (ОУ): области применения, условное графическое изображение, структурная схема. Назначение элементов структурной схемы

Введение

Транзистор - это полупроводниковый электронный прибор, управляющий током в электрической цепи, за счёт изменения входного напряжения или тока. Но по сути это обычный выключатель, включающий и выключающий ток, на котором, кстати, и основан компьютерный код, где 1 означает то, что ток есть, а 0 его отсутствие. Изобретению этого устройства мы обязаны американской лаборатории Bell Labs, в которой Уильям Шокли, Джон Бардин и Уолтер Браттейн в далёком 1947 году создали его. Но как всегда и бывает с великими изобретениями, первоначально оно не было замечено общественностью, и только через 9 лет учёные получили Нобелевскую премию в области физики. Само же название “transistor” было придумано их коллегой Джоном Пирсом, который сложил его из 2 слов - “transfer” - переносить и “resistance” - сопротивление.

Первыми заметившими изобретение стали радиолюбители, использующие их для усиления сигнала. Почувствовав, что изобретение может принести прибыль, лаборатория решила продавать лицензии на использование транзисторных технологий. Успех не заставил себя долго ждать, и уже в 1956 году появился первый портативный радиоприёмник, что было раньше невозможно из-за использования громоздких ламп, а компактные транзисторы легко справлялись с этой задачей, что позволяло теперь всегда носить музыку с собой. Изобретения такого портативного устройства показало всю важность и востребованность новой технологии, что стало привлекать в эту сферу новые пытливые умы изобретателей. И через 2 года Джеком Килби и Робертом Нойсом был сделан гигантский шаг в развитии транзисторов, с помощью своей новой технологии они объединили их в одну микросхему. Этот революционный шаг познакомил Нойса с Гордоном Муром, с которым в 68-ом году он создает компанию Intel.

Именно микросхема, основанная на транзисторах, ознаменовала начало нового этапа в электронике, и именно она сделала возможным появление современных компьютеров. В 1965 году в одной из публикаций был сформулирован “закон Мура”, который говорил, что число транзисторов в микросхеме должно удваиваться с каждым годом. Этому закону постоянно предсказывают кончину, но вот уже больше сорока лет он продолжает работать. К примеру, в первом процессоре Intel 4004, выпущенном в 1971 году было 2300 транзисторов, а к 1989 году Intel 486 насчитывал их уже 1 200 000. Так, обходя на своём пути множество преград и постоянно совершенствуясь, последний процессор Intel Core 2 Extreme перевалил собой отметку в 820 000 000 транзисторов.

Таким образом, уже более шестидесяти лет одно маленькое изобретение продолжает двигать технологии вперёд, постоянно поднимая их на новый уровень. И уже, наверное, невозможно представить, как выглядел бы мир без этого маленького устройства.

Задание на курсовую работу

Определить узловые потенциалы в схеме. Построить передаточную характеристику схемы на участке база-коллектор транзистора) и нанести на нее рабочую точку. Обозначить на характеристике области работы транзистора.

Оценить расчетным путем основные малосигнальные параметры рассматриваемой схемы.

Определить по входным и выходным вольт-амперным характеристикам транзистора области работы усилителя без нелинейных искажений.

Построить принципиальную схему с узловыми потенциалами, передаточной, переходной, семейств входных и выходных вольт-амперных, амплитудно-частотной характеристик с помощью прикладной программы компьютерного моделирования и исследования электронных схем (Electronics Workbench, Multisim, Micro-Cap).

Сравнить результаты с полученными расчетным путем.

Рис.1

Табл.1 Исходные данные

Тип транзистора

Параметры транзистора КТ3102Г.

Транзистор кремниевый, n-p-n структуры.

Табл.2 Параметры транзистора КТ3102Г

Обозначение

Значение

Параметр

Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером (приводится диапазон допустимых значений)

Граничная частота усилителя

Емкость коллекторного перехода (Cк) при напряжении на коллекторе (Uкб)

Uкэ.нас/(Iк/Iб),

Напряжение насыщения коллектор-эмиттер (Uкэ.нас) биполярного транзистора при заданном токе коллектора (Iк) и заданном токе базы (Iб)

Uбэ.нас/(Iк/Iб),

Напряжение насыщения коллектор-эмиттер (Uбэ.нас) биполярного транзистора при заданном токе коллектора (Iк) и заданном токе базы (Iб)

Обратный ток коллектора

Обратный ток эммитера

Максимально допустимое постоянное напряжение эмиттер-база

Максимально допустимое постоянное напряжение коллектор-эмиттер

Максимально допустимый ток коллектора

Максимально допустимая рассеиваемая мощность на коллекторе

Табл.3 Ряды номинальных значений параметров типовых радиоэлементов (ГОСТ 2825-67)

Индекс ряда

Числовые коэффициенты, умножаемые на 10

Так как в курсовой работе будет использоваться приложение Workbench 5.12, в котором отсутствует транзистор КТ3102Г, то вместо него будем использовать его зарубежный аналог BC109C, который схож с ним по параметрам. Поэтому расчетные значения могут отличаться от значений, полученных при использовании приложения Workbench.

Статический коэффициент усиления базового тока выбираем равным 500.

Так как транзистор кремниевый, то контактная разность обоих переходов равна - значение напряжения база-эмиттер. Так как - источник постоянного напряжения, то схему можно упростить, убрав все конденсаторы и ненужные резисторы. Также уберем из схемы источник переменного напряжения и получим схему изображенную на рис.2

Рис.2

Предположим, что транзистор находится в нормальной активной области. Учитывая, что рабочая точка находится в классе А, рассчитаем напряжение коллектора.

Для малосигнальных схем напряжение на Rэ составляет 5-30% напряжения Eк, поэтому выберем 10%.

Определим сопротивления и, для этого рассчитаем ток эмиттера, используя для этого коэффициент усиления эмиттерного тока, выраженного через коэффициент усиления базового тока:

По условию в=500, тогда

Аналогично рассчитаем базовый ток:

Получаем:

Если пренебречь током базы, то на участке А-В протекает ток равный отношению:

Из выражений (2) и (3) следует, что

Найдем сопротивление базы. Для этого нам понадобится коэффициент нестабильной рабочей точки каскада, выражаемый как:

Отсюда вычислим номинал сопротивления RБ, который так же равен параллельному соединению резисторов R1 и R2.

Решая систему из уравнений (4) и (5) найдем R2 и R1

Получаем:

Номинальные значения резисторов возьмем в соответствии с рядом Е24, тогда получим:

Задание 2

Рассмотрим узловые потенциалы в схеме. Построить передаточную характеристику схемы на участке база-коллектор транзистора) и нанести на нее рабочую точку. Обозначить на характеристике области работы транзистора.

Рассмотрим узловые потенциалы в схеме изображенной на рис.3.

Рис.3

Найдем разность потенциалов на эмиттере:

однокаскадный усилитель биполярный транзистор

Найдем разность потенциалов на базе:

Найдем разность потенциалов на коллекторе:

Получили узловые потенциалы:

Для построения передаточной характеристики воспользуемся приложением Workbench 5.12. Для того чтобы построить зависимость, нужно в схеме поставить два вольтметра: первый - для снятия потенциала базы, ставится между базой и “землей”, второй - для снятия потенциала коллектора, ставится между коллектором и “землей”. Так же для того, чтобы регулировать потенциал базы в схему вводят источник ЭДС подсоединенный к базе (Рис.4).

Рис.4

Рис.5

На передаточной характеристике (рис. 5) показана рабочая точка (РТ) соответствующая значениям:

Задание 3

Оценить расчетным путем основные малосигнальные параметры рассматриваемой схемы. А также при какой амплитуде входного сигнала в схеме возникнут нелинейные искажения.

Рис.6

Исходные данные:

Для транзистора сопротивление p-n перехода составляет:

Принимаем

Рассчитаем входное сопротивление в схеме с общим эмиттером:

Рассчитаем коэффициент усиления по току:

Найдем сопротивление, когда нагрузка включена параллельно с сопротивлением коллектора:

Рассчитаем коэффициент усиления по напряжению:

Рассчитаем коэффициент усиления по мощности:

Рассчитаем входное сопротивление схемы:

Рассчитаем выходное сопротивление схемы:

Рассчитаем:

Задание 4

Необходимо узнать при какой амплитуде входного сигнала в схеме возникнут нелинейные искажения. Амплитуда выходного сигнала не может быть больше, чем.

Найдем действующее значение амплитуды входного сигнала:

Построим выходные ВАХ транзистора - (берем из справочника в электронном виде) (Рис.7).


Рис.7

На выходных ВАХ транзистора нанесем рабочую точку, а так же нагрузочную прямую по постоянному (А-Б) и переменному току.

Нагрузочную прямую по постоянному току построим по двум крайним случаям.

Первый случай (А): транзистор полностью открыт

Второй случай (Б): транзистор полностью закрыт

Для того чтобы построить рабочую точку на ВАХ следует провести прямую на уровне до пересечения со статической нагрузочной прямой. Это пересечение и будет являться рабочей точкой.

Прямая по переменному току имеет наклон и проходит через рабочую точку. Так как масштаб оси OY в мили Амперах то полученное значение б надо умножить на 1000.

Задание 5

На основе сведений о нижней граничной частоте полосы пропускания усилителя с учетом данных о сопротивлениях нагрузки и источника сигнала определить емкости разделительных и блокировочного конденсаторов.

Учитывая, что

Найдем емкости разделительных (Cp1 и Cp2) и блокировочного (Сбл) конденсаторов.

При расчете постоянной времени ф для каждого из конденсаторов будем учитывать только данный конденсатор, считая, что другие конденсаторы заменяют соответствующие точки в схеме.

Получим следующие эквивалентные схемы для расчета постоянных времени.

Рис.8

Для начала рассчитаем постоянную времени для нижней частоты:

Примем, что все постоянные времени равны между собой:

Рассчитаем значения и, а также:

Получаем:

Номинальные значения резисторов возьмем в соответствии с рядом E24,тогда получаем:

Задание 6

Построить АЧХ и ФЧХ усилителя, по которым определить граничные частоты полосы пропускания усилителя.

Вычислим верхнюю граничную частоту полосы пропускания усилителя. Для этого нам понадобится параметр при.

Верхняя граничная частота любого усилительного каскада определяется по формуле (8).

Коэффициент G для каскада с общим эмиттером определяется по формуле (10).

Определим - среднее время жизни неосновных носителей заряда в базе:

Определим эквивалентную емкость коллекторного перехода:

Емкость перехода при нулевом смещении;

Контактная разность потенциалов, которая равна 0,7 В;

Напряжение на переходе.

Найдем ширину полосы пропускания:

Построим АЧХ и ФЧХ для однокаскадного усилителя. Для этого воспользуемся приложением Workbench 5.12. В схему надо добавить генератор импульсов (Function Generator), а так же надо подключить Bode Plotter в схему таким образом, чтобы вход его был подключен к одному из зажимов на входе схемы, а выход к одному из зажимов выхода схемы (Рис.9).



Рис.11

Заключение

В ходе проделанной курсовой работы произведены расчеты основных параметров однокаскадного усилителя BC109C. Определили сопротивления резисторов, входящих в схему, емкости разделительных Cp1 и Cp2 и блокировочного конденсатора Сбл. А также малосигнальные параметры схемы Kuo, Kio, Kp, Rвх, Rвых.

Список литературы

1) Гусев В.Г., Гусев М.Ю. Электроника. -М.: “Высшая школа”. 1991 -622с.: ил.

2)Рекус Г. Г., Чесноков В. Н. Лабораторные работы по электротехнике и основам электроники: Учеб. пособие для неэлектротехн. спец. вузов. - М.: Высш. шк., 1989. - 240 с.: ил.

3)Лачин В.И., Савелов Н.С. Электроника: Учеб. пособие. - Ростов н/Д изд-во «Феникс»,2000. - 448 с. Прикладное программное обеспечение: Electronic Workbench Pro Edition