История резины. История открытия резины Когда появилась зимняя резина

И изделия из нее прочно вошли в наш обиход: они востребованы в быту, медицине, практически во всех отраслях промышленности – всего и не перечислить. Но история появления в нашей жизни, казалось бы, естественной и хорошо знакомой резины не так проста, как это может показаться на первый взгляд. В общем, «история резины» - это история проникновения и освоения европейским сообществом каучука.

Начало этой истории относится к тому времени, когда Колумб в экзотической тогда Америке увидел индейцев, играющих в мяч, довольно тяжелый, из черной массы, прыгающий намного лучше кожаных европейских мячей. Секрет изготовления этих мячей заключался в обнаруженных индейцами интересных свойствах каучуконосных деревьев, которые растут в странах с тропическим климатом – Индонезии, Индии, на Цейлоне, в Бразилии. Наиболее распространена бразильская гевея, ее высота – 30 метров, в обхвате – 3,5 метра. При надрезе ее коры выступает белый млечный сок, латекс. Если его собрать побольше и подержать на солнце, то получится желтоватая масса, тягучая и немного липкая. Еще несколько манипуляций – и индейцы использовали природный каучук и для развлечений, и для бытовых нужд: делали из него бутылки, промазывали пироги, некоторые индейцы покрывали ноги этой массой и держали над костром, было больно, но зато индеец получал на всю жизнь пару непромокаемых чулок. Аборигены Америки нашли применение на практике не только непромокаемости и упругости каучука, но и его клейкости: птичьи перья для украшения они приклеивали к телу именно каучуком.

Следующий этап – путешествие по Южной Америке французского путешественника Ш. Кондамина, который второй раз открыл каучук. Именно с 1738 года обычно ведут историю натурального каучука, когда Кондамин представил в АН в Париже образцы каучука и описание способов его добычи. К сожалению, значительных практических результатов этот доклад не дал: привезенные образцы высохли и затвердели. Тогда каучук сумели использовать только для одного дела – стирания карандашных записей. Таким образом, ластик – это первая вещь, сделанная в Европе из каучука.

Прошло еще 80 лет. Ч. Макинтош искал способ вернуть высохшему каучуку природные свойства. Совершенно случайно он пролил на образец каучука солвент-нафта (вещество, добываемое из каменноугольной смолы). Макинтош пропитал каучуком плотную материю, и она стала непромокаемой. Так появились первые плащи-макинтоши, а потом и первые галоши, и сумки для перевозки почты. Правда, потом стал очевиден большой недостаток всей этой продукции, делавший ее совершенно непригодной: в сильную жару материал становился слишком мягким, а в холодную погоду затвердевал, как камень.

1839 год. Америка. Ч. Гудьир искал способ сделать каучук нечувствительным к изменениям температуры. Многократные опыты требовали денег, и в итоге исследователь оказался в долговой тюрьме; именно там, продолжая опыты, он обнаружил, что липкость исчезает, если посыпать каучук серой и высушить его. Уже выйдя из тюрьмы, Гудьир, опять же по рассеянности, положил кусочек каучука с серой не на стол, а на горячую плиту. Ошибка оказалась открытием, потому что на плите Гудьир обнаружил не липкую смесь, а сухой мягкий упругий кусок… уже резины. Под действием серы при умеренном нагревании каучук приобретал большую прочность, твердость, становился менее чувствительным к переменам температуры. Процесс назвали вулканизацией, а вулканизированный каучук – резиной. Изделия из резины начали быстро завоевывать рынок, а в конце 19 века в период повсеместной электрификации резина стала использоваться и как хороший изолятор.

Все больше и больше требовалось резины. Разрастались огромные плантации гевеи в Южной Америке и Индонезии. Примерно в то же время один предприимчивый англичанин тайком вывез из Бразилии 70 тыс. семян гевеи, но прижились они только в одном месте – на Цейлонских островах, принадлежавших тогда Англии. На мировом рынке каучука появились два крупных монополиста, и стало ясно: природный каучук не экономичен и не рентабелен, необходимо обнаружить способ получения искусственного каучука. Дальнейшая история освоения резины – это история химических исследований, в основном, российской химической науки.

В России резиновая промышленность возникла в первой половине 19 века. До революции резиновое производство было представлено 4-мя предприятиями: «Треугольник», «Проводник» и сравнительно небольшими заводами «Богатырь» и «Каучук». В 1913 году на них работало 23 тыс. человек и выпускали они главным образом обувь; сырье и оборудование были заграничными, техническое руководство осуществляли иностранцы. Мало кто знает, что производство туалетной губки являлось в 19 веке секретом завода «Треугольник»; как ни странно, этот незамысловатый предмет был наиболее конкурентоспособным резиновым изделием на мировом рынке. После Октябрьской революции резиновая промышленность представляла достаточно мощную отрасль. Был взят общий курс на индустриализацию, а потому резко возросла потребность в комплектующих резинотехнических изделиях. Но производство резины находилось в исключительной зависимости от импорта натурального каучука. Существовало два возможных варианта решения проблемы. Первый - изыскание каучуконосов, пригодных для разведения в районах с умеренным климатом. В СССР этим занимался Н. И. Вавилов, в США инициаторами этих работ были Т. Эдисон и Г. Форд.

Второй вариант – создание синтетического каучука. Химические исследования состава каучука начались еще с опытов М. Фарадея в 1826 году. В 1879 А. Бушард наблюдал превращение изопрена в каучукоподобную массу, а в 1910 – И. Л. Кондаков подобное превращение диметилбутадиена. В 1909 г. Сергей Васильевич Лебедев показал вещество, близкое к каучуку, приготовленное из дивинила – бесцветного летучего газа. Но после долгих трудов ему удалось добыть всего лишь 19 граммов. В России в том же направлении работал И. И. Остромысленский, проводя опыты на заводе «Богатырь», в Германии – К. Гарриес, в Англии – Ф. Мэтьюс и Е. Стрейкедж. Таким образом, наука шла по стопам природы: сначала надо было получить полимер диеновых углеводородов, а затем синтезировать из них каучук.

В 1926 году Советское правительство объявило всемирный конкурс на производство искусственного каучука, причем выдвигались 3 условия: 1) сырье должно быть дешевым; 2) качество не хуже натурального; 3) срок до представления результатов разработок – 2 года. В мае 1928 года этот конкурс выиграл С. В. Лебедев. В качестве сырья он использовал обыкновенный картофель, из которого получал спирт, а уже из спирта – дивинил. Причем еще два года назад из 1 л спирта он получал 5 гр дивинила, а сейчас - 50 гр, тем самым сокращая расходы в 10 раз. Но этот безусловный прорыв не решал проблему, так как, например, на изготовление одной автомобильной шины уходило 500 кг картофеля. Потом ученые, усовершенствовав изобретение С. В. Лебедева, стали добывать дивинил из природных газов. И уже в 1929 году правительство приняло решение строить в Ленинграде опытный завод по получению синтетического каучука из спирта по методу Лебедева и еще два завода, которые должны были опробовать другие известные методы: Б. В. Бызова и группы ученых под руководством А. Л. Клебанского. 15 февраля 1931 года газеты всего мира сообщили, что в СССР выпущена первая большая партия искусственного каучука. Ни Германия, ни Англия на тот момент не были готовы предложить свой вариант решения этой промышленной проблемы. Интересно, что Т. Эдисон в своем интервью так оценил это событие: «Известие о том, что Советы достигли успехов в производстве синтетического каучука из нефти, невероятно. Этого нельзя сделать. Я бы даже сказал больше: весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других сейчас нельзя сказать, что получение синтетического каучука вообще когда-нибудь будет успешным». И тем не менее, уже в 1932 году в Ярославле дал продукцию первый завод синтетического каучука.

С 1951 года началось производство каучука из нефтяных газов и продуктов переработки нефти. Долгое время искусственный каучук, превосходя настоящий по отдельным показателям (температурный диапазон, прочность, химическая стойкость), уступал в одном – в эластичности (что очень важно для, например, автомобильных и авиационных шин), но и эта проблема была решена.

Таким образом, и природный дар – дерево гевея, и ряд случайностей, и долгий кропотливый труд ученых сделали резину одним из самых необходимых и универсальных материалов, востребованным каждый день, в самых разных ситуациях, в самых разных сферах деятельности человека.

Резина — продукт вулканизации композиции, содержащей связующее вещество — натуральный или синтетический каучук.
В конструкции современных автомобилей используют несколько сот изделий, выполненных из резины. Это шины, камеры, шланги, уплотнители, герметики, детали для электро- и виброизоляции, приводные ремни и т. д. Их масса составляет до 10 % от общей массы автомобиля.
Широкое применение резиновых изделий в автомобилестроении объясняется их уникальными свойствами:
. эластичностью;
. способностью поглощать ударные нагрузки и вибрацию;
. низкой теплопроводностью и звукопроводностью;
. высокой механической прочностью;
. высокой сопротивляемостью к истиранию;
. высокой электроизоляционной способностью;
. газо- и водонепроницаемостью;
. устойчивостью к агрессивным средам;
. низкой плотностью.
Основное свойство резины — обратимая эластичная деформация — способность многократно изменять свою форму и размеры без разрушения под воздействием сравнительно небольшой внешней нагрузки и вновь возвращаться в первоначальное состояние после снятия этой нагрузки.
Подобным свойством не обладают ни металлы, ни древесина, ни полимеры.
На рис. 1 приведена классификация резины .
Резину получают вулканизацией резиновой смеси, в состав которой входят:
. каучук;
. вулканизирующие агенты;
. ускорители вулканизации;
. активаторы;
. противостарители;
. активные наполнители или усилители;
. неактивные наполнители;
. красители;
. ингредиенты специального назначения.



Рис. 1. .Классификация резин .

Натуральный каучук — природный полимер, представляющий собой непредельный углеводород — изопрен (С5Н8)n.
Натуральный каучук добывают главным образом из млечного сока (латекса) каучуконосных растений, в основном из бразильской гевеи, в котором его содержится до 40 %.
Для выделения каучука латекс обрабатывают уксусной кислотой, под действием которой он свертывается, и каучук легко отделяется. Затем его промывают водой, прокатывают в листы, сушат и коптят для устойчивости против окисления и действия микроорганизмов.
Производство натурального каучука (НК) требует больших затрат и не покрывает промышленных потребностей. Поэтому наибольшее распространение получил синтетический каучук (СК). Свойства СК зависят от строения и состава.
Изопреновый каучук (обозначается СКИ) по своему составу и строению близок к натуральному каучуку, по некоторым показателям уступает ему, а по каким-то превосходит. Резина на основе СКИ отличается газонепроницаемостью, достаточной стойкостью против воздействия многих органических растворителей, масел. Существенные его недостатки — низкая прочность при высоких температурах и низкая озоно- и атмосферостойкость.
Бутадиен-стирольный (СКС) и бутадиен-метилстирольный (СКМС) СК наиболее широко используются в автомобилестроении. Резины на основе этих каучуков имеют хорошие прочностные свойства, высокое сопротивление изнашиванию, газонепроницаемость, морозо- и влагостойкость, однако нестойки при воздействии озона, топлива и масел.
Резина на базе бутадиенового каучука (СКД) эластична, износостойка, имеет хорошие физико-механические свойства при низких температурах, однако существуют трудности при переработке резиновых смесей. Она имеет недостаточно прочную связь с металлокордом при производстве армированных изделий.
Из СК специального назначения бутадиен-нитрильный (СКН) каучук отличается высокой бензомаслостойкостью, сохраняет свои свойства в широком интервале температур, обеспечивает прочную связь с металлами, поэтому применяется для изготовления металлорезиновых изделий, работающих в контакте с нефтепродуктами. Недостаток — быстрое старение.
Резины на основе фторкаучука (СКФ) и акрилатного каучука (АК) обладают очень высокими прочностными свойствами, стойки к воздействию топлив, масел, многих других веществ, высоких температур, однако низкая морозостойкость ограничивает их применение. Комплексом положительных свойств обладают силиконовые каучуки.
Молекулы СК являются полимерными цепями с небольшим числом боковых ответвлений. При нагревании с некоторыми вулканизирующими веществами между молекулами каучука образуются химические связи — «мостики», что резко изменяет механические свойства смеси. Чаще всего в качестве вулканизирующего ингредиента используют серу (1—3 %).
Для ускорения вулканизации в резиновую смесь добавляют ускорители и активаторы.
Чрезвычайно важным ингредиентом резины являются наполнители. Активные наполнители резко усиливают прочностные свойства резины. Чаще всего роль активного наполнителя выполняет технический углерод (сажа). Введение технического углерода делает резину более прочной, повышает износостойкость, упругость, твердость. Неактивные наполнители (мел, асбестовая мука и др.) служат для увеличения объема резиновой смеси, что удешевляет изготовление резины, но ее физико-механических свойств не улучшают (некоторые наполнители даже ухудшают).
Пластификаторы (мягчители) облегчают приготовление резиновой смеси, формование изделий, а также улучшают эластичность резины при низких температурах. В качестве пластификаторов используют высококипящие фракции нефти, каменноугольную смолу, растительные масла, канифоль, синтетические смолы. Для замедления процессов старения резины и увеличения ее ресурса в состав резиновой смеси вводят противостарители (антиокислители, стабилизаторы).
Особая роль отводится армирующим наполнителям. Они не входят в состав резиновой смеси, а вводятся на стадии формования изделия. Текстильная или металлическая арматура снижает нагрузку на резиновое изделие, ограничивает его деформацию. Изготавливают такие армированные резиновые изделия, как шланги, приводные ремни, ленты, автопокрышки, где для усиления прочности используют текстильный и металлический корды.
Подбором соответствующих каучуков, рецептуры резиновой смеси, условий вулканизации создают материалы, имеющие определенные свойства, что позволяет получать изделия, обладающие различными эксплуатационными свойствами, причем устойчиво сохраняющие свои качества продолжительное время и обеспечивающие функциональное назначение деталей и работоспособность узлов и агрегатов.
Из отработавших резинотехнических изделий изготовляют по специальной технологии регенерат, который добавляют в резиновую смесь в качестве заменителя части каучука. Однако резина, в состав которой входит регенерат, не отличается хорошими эксплуатационными свойствами, а потому из нее изготовляют изделия (коврики, ободные ленты), к которым не предъявляют высоких технических требований.

Статья о создании шин поможет узнать, как изобреталась и изменялась авторезина, и что сделало ее такой устойчивой, надежной, прочной и износостойкой.

Сегодня сложно представить, что когда-то на колеса автомобиля не ставились покрышки. Это было в эпоху первых автомашин и деревянных колес. Правда, они даже при неинтенсивной эксплуатации быстро разрушались и требовали замены. Изобретение колеса, усиленного при помощи стального обода (прообраза современного диска) решило эту проблему, но и эта технология не дала нужных результатов.

История о создании автомобильных шин

Роберт Уильям Томпсон первым придумал использовать шины из эластичного материала для увеличения комфортабельности и безопасности автомобиля в 1846 году, разработал конструкцию автошины и запатентовал свое изобретение. Покрышку, изобретенную Томпсоном, еще называли «воздушным колесом». Она представляла собой камеру из плотной парусины, пропитанную раствором каучука или гуттаперчи обитую снаружи кусками кожи.

Начинания Томпсона подхватили другие изобретали. Многочисленные эксперименты энтузиастов увенчались успехом: была изобретена каучуковая пневмошина, с отделенной от камеры покрышкой. Появление пневматического колеса позволило сделать вождение плавным. Сами автошины стали прочнее и долговечнее (эти параметры отсутствовали в первых вариациях изобретения).

Открытие вулканизации

Статья об изобретении шин невозможна без упоминания о Чарльзе Гудьире.

Процесс вулканизации позволил организовать производство по-настоящему прочной, и при этом эластичной шины. Американский изобретатель Чарльз Гудьир в 1839 году даже не подозревал, что созданная им технология производства резины путем соединения каучука и серы станет неотъемлемой частью производства автомобильных покрышек.

В 1830-е Гудьир занимался производством прорезиненной обуви и ткани. На своем предприятии он выпускал каучуковые игрушки, одежду, обувь, зонтики. Однако свойства этого материала не позволяли товарам быть качественными: каучук плавился от высоких температур, был непрочен и имел другие недостатки.

Гудьир всерьез взялся за эту проблему. Путем экспериментов он узнал, что нагревание каучука, смешанного с серой, дает материалу необходимую прочность, причем не только на поверхности, но и по всей его толщине. Можно с уверенностью сказать, что 1839 год - время изобретения резины для автомобилей.

Компания Goodyear. Основание и первые годы работы

Предприятие Goodyear Tire & Rubber Company было зарегистрировано в 1898 году в США. В тот день началась история создания шин Goodyear. Основатель, Фрэнк Зиберлинг, назвал свою компанию в честь того самого изобретателя технологии вулканизации.

С самого основания компании ее продукция стала востребованной и покупаемой. Уже спустя 4 года, в 1901, предприятие стало создавать шину для автомобиля знаменитого Генри Форда. Известный в те годы авто Model T был оборудован покрышками марки Goodyear.

В 1907 году председатель правления бренда получает патент на изобретенную им съемную автошину. Эту технологию Goodyear сегодня используют повсеместно.

Эксперименты, постоянное улучшение характеристик продукции и внедрение новых технологий позволили концерну к 1926 году стать крупнейшим в мире производителем автомобильных шин и других резинотехнических изделий.

Расширение деятельности

В период с 1927 года по наши дни компания активно развивалась, осваивались новые производственные возможности, улучшались конструкции, проектировались шины не только для автомобилей, но и для авиационной техники. В 1971 производитель выпустил покрышки для лунохода Apollo 14. Отпечатки протектора этих шин остались на луне на века.

В эти годы открываются научно-технические центры, представительства во многих странах мира, заключаются соглашения с известными брендами. Все это позволяет Goodyear быть на шаг впереди конкурентов - компания первая внедряет инновационные решения, выводя на рынок новые продукты с улучшенными характеристиками.

Отдельно стоит упомянуть и о безупречной репутации бренда. Goodyear неоднократно занимал топовые места в рейтингах самых ответственных и надежных компаний.

О производстве Goodyear

Основываясь на истории по созданию шины, опыте и традициях, в наши дни компания удерживает одно из лидирующих мест среди производителей автомобильных шин. Заводы бренда выполняют полный цикл работ по созданию высококачественной шины: от проектирования шины и создания резиновой смеси до выпуска и тестирования нового продукта.

Создание автомобильной резины Goodyear ведется на самых современных производственных линиях. Корректировка производственных процессов, состава резиновой смеси, улучшение рисунка протектора и добавление функциональных вставок позволяют выпускать новые модели, предназначенные для разных категорий автолюбителей (жителей северных регионов, бездорожья, грузовых авто и др.).

Резина и силика - главные компоненты автопокрышки

Пневматическая автомобильная шина - высокотехнологичная конструкция, способная удерживать воздух под давлением. Благодаря изобретению Чарльза Гудьира, сегодняшняя авторезина представляет собой смесь натурального и искусственного каучука, сажи, серы, кремниевых и синтетических соединений. Все эти компоненты на производстве проходят через миксер, в результате получается полотно сырой резины.

Силика - еще один материал, применяемый в современном производстве. Эта кислота, улучшающая эластичность и сцепные характеристики резины была открыта еще в 50-е годы прошлого столетия. Процесс развития технологии добавления силики в смесь на шинных производствах запущен сравнительно недавно. Это объясняется дороговизной материала и необходимостью использования спецоборудования для ее смешения с резиной.

Конструкция шины

На пневматических шинах обязательно присутствует несколько элементов:

  • каркас - основа изделия, представляющая собой несколько слоев обрезиненного корда,
  • боковина - наружный резиновый элемент, призванный обезопасить конструкцию от внешних повреждений в боковой части,
  • борт - жесткое крепление к колесу на покрышке,
  • брекер - защищает каркас от ударов и придает изделию жесткость,
  • протектор - канавки и желобки на прорезиненной поверхности покрышки, обеспечивающие отсутствие скольжения и безопасное передвижение при неблагоприятных внешних условиях: на грязи, грунтовой дороге, мокрой, заснеженной или обледенелой трассе.

Автомобильная резина от Goodyear постоянно совершенствуется, конструктивные элементы приобретают новые свойства.

История открытия резины берет свое начало вместе с открытием американского континента. Издавна исконное население Центральной и Южной части Америки получали каучук путем сбора млечного сока с каучуковых деревьев.

Еще Колумб в свое время обратил внимание, что мячи, которыми играли индейцы, были созданы из каучуковой массы черного цвета, и они отскакивали намного лучше, чем кожаные мячи, сделанные европейцами. Из каучука делали не только мячи, но и посудную утварь, использовали для герметизации дна пирог, создавали «чулки», которые не промокали (это была довольно болезненная технология: ноги покрывались каучуковой массой, далее их необходимо было удерживать над огнем до образования непромокаемого покрытия). Использовался каучук и в качестве клея, индейцы с его помощью украшали свои тела перьями.

Колумб сообщал о существовании необычайного вещества с многочисленными свойствами, но Европа не обратила на это должного внимания, хотя даже первопоселенцы Нового света активно применяли каучук. Длительное время каучук использовался при создании мягких игрушек, также делали попытки создать обувное водонепроницаемое покрытие.

И только в 1839 году американским изобретателем Чарльзом Гудьиром было сделано открытие. Он стабилизировал эластичный состав каучука путем перемешивания каучука в сыром виде и серы, с дальнейшим подогревом. Этот метод назвали вулканизацией, скорее всего именно он стал первым процессом полимеризации в промышленности.

Материал, который получался в результате процесса вулканизации, назвали резиной. Позже резину стали активно использовать в машиностроительной отрасли, создавая различные уплотнители и рукава. А в только начинающем своем развитии электротехника нуждалась в прочном и эластичном материале для кабелей. Сегодня резина используется повсеместно. Очень востребованы вот такие резиновые коврики http://www.ru.all.biz/kovriki-rezinovye-bgg1001384 . Они используются в коридорах, тамбурах, перед входом в помещение, на крыльце. Эти коврики препятствуют попаданию грязи и снега в дом.

Производство каучука из нефтяных продуктов переработки и газов берет свое начало с 1951 года. Длительное время каучук, созданный искусственным путем, превосходил настоящий по всем показателям, кроме одного – эластичности. Но эта проблема также была решена.

Таким образом, дерево гевея, будучи природным дарованием и случайные эксперименты, и длительная кропотливая работа ученых разработали одно из самых нужных и универсальных в использовании материалов – резину. Резина востребована ежедневно, в различных ситуациях, абсолютно в любой сфере деятельности человека.

Автомобильная шина прошла долгий путь от первого изобретения, которое было запатентовано в далеком 1846 году, до современного многообразия и технологического совершенства. Больше века назад в производству шин участвовал один единственный человек, а первые мануфактуры, фактории и конвейеры стали появляться десятилетиями позже. Это сейчас гигантские трансконтинентальные корпорации обладают собственными базами для тестирования, огромными производственными мощностями и штатом в десятки тысяч человек…

А 10 июня 1846 года в США выдали знаменательный для истории автомобилестроения патент под номером 10990, который закреплял за Робертом У. Томпсоном право на производство и установку первых в мире пневматических шин, с примитивным по современным меркам инженерным решением, которое было основано на воздушной камере из парусины, пропитанной для удержания воздуха раствором каучуковой массы и гуттаперчей.

Внешняя часть состояла из клепанных кусков дубленной кожи. Первые испытания нового изобретения состоялись в том же году, когда Томпсон установил шины на карету, а потом проверил уровень снижения тяги. Результаты были великолепны. Сила тяги уменьшалась на 38% при езде по пересеченной местности, а на не самом лучшем в мире дорожном покрытии почти на 70. К тому же путешествовать каретой на этих шинах было удобнее, мягче и тише. Правда, сразу же после смерти изобретателя об этих шинах забыли. Мир стал ждать появления нового гуру в области производства пневматических шин, пытаясь меньше ругаться во время тряски в каретах.

Самым мощным прорывом в области стал патент от 1888 года, который был выдан Джону Данлопу, имя которого сегодня знает, наверное, каждый школьник, который поиграл в любую игру про гонки. Именно фамилия Данлоп ассоциируется с появлением первой пневматической шины в таком виде, который мы привыкли ее видеть.

В 1887 году после многочисленных жалоб сына на неудобство велосипеда Джон Данлоп склеил два обруча из садового шланга, накачал их воздухом, а потом натянул на колесо велосипеда. Опять среди материалов фигурировала прорезиненная парусина. Успех этой шины Danlop был практически доказан во время исторической гонки на велосипедах, в которой ужасный велосипедист Уильям Хьюм на велосипеде с пневматическими покрышками с легкостью выиграл все заезды, в которых вообще решился участвовать. Этот успех стал основной причиной для Джона Данлопа (кроме, конечно же, проблем с деньгами в семье) организовать собственное небольшое производство шин в городе Дублин. Компания «Пневматическая шина и агентство Бута по продаже велосипедов» стала первой в мире компанией, которая начала изучать и производить пневматические шины на промышленном уровне.

Всего год спустя никому неизвестный инженер, работающий в компании Данлопа предложил отделить покрышку от камеры, а также армировать покрышку проволочными кольцами. В это же время был придуман первый способ монтажа и демонтажа шин, который стал прорывом для всех компаний по производству шин.

После этого всего пять лет понадобилось миру, чтобы французы Андре и Эдуард Мишелин (Michelin) изготовили первую в мире автомобильную шину, которая с трудом, но доехала до финиша. Это был сырой образец пневматической шины, который не учитывал множества внешних условий, а материал обладал огромным количеством внутренних напряжений, что привело к десяткам проколов на трассе, протяженной на 1200 км.

Всего год спустя в 1896 году Автомобиль Ланчестер был укомплектован шинами от Данлоп, которые постарались учесть ошибки конкурентов. Первые автомобильные шины в разы увеличили проходимость, комфорт, плавность и скорость автомобиля, но были неудобны с точки зрения монтажа. На установку шин уходил порой весь рабочий день. Конкуренция между производителями шин, растущий спрос, а также довольной быстрый рост цен на пневматические шины привели к постоянному поиску новых инженерных решений, что привело к появлению стандартизации, улучшения систем монтажа-демонтажа шин, а также появлению нововведений, которые используются и по сей день. Например, внедрение корда в шину из особо прочных нитей, новые системы крепежа, которые стали основной причиной валообразного роста шинной промышленности в начале двадцатого века.

Именно в этот период времени наиболее четко прослеживает динамика развития науки, влияющей на производство шин, в первую очередь химии. Самые первые шины были низкопрофильными, тонкими и походили на велосипедные. Это было связано не столько с особенностями моды того времени, сколько с отсутствием углеродных наполнителей для увеличения прочности и снижения внутренних напряжений, а также для придания более жесткой формы. Именно отсутствие углерода в составе резины обусловило белый и бежевый цвета шин в начале двадцатого века.

Однако уже в двадцатых-тридцатых годах двадцатого века углерод стал неотъемлемой частью состава резины наравне с каучуком, что привело к значительному увеличению высоты и ширины протектора. Это увеличило максимальную нагрузку на шину, позволив улучшить показатель грузоподъемности, а также повысило проходимость за счет увеличения пятна контакта протектора с дорогой. Шины из мягкого каучука, который из-за особой химической структуры смеси с углеродом имеют только радиальное направление нитей каркаса, а потому очень четко передают все неровности дороги на автомобиль. Это некомфортно и жестко.

Настоящим прорывом стало появление химических полимеров, которые позволили увеличить жесткость конструкции, не теряя в комфортности и проходимости, а также увеличивая нагрузку на шину. Диагональные шины становятся повсеместно используемыми.

Сейчас наука шагнула далеко вперед, а соревнования компаний между друг другом носят настолько детальный характер, что порой их даже трудно оценить обыкновенному покупателю. Доли секунды, граммы грузоподъемности, незаметные проценты увеличения тяги, снижения сопротивления качению. Цифры-цифры…

Материал подготовлен в «Покрышка.ру»


Дата публикации: 17.02.2011.

Внимание! Все содержимое этого сайта охраняется законодательством об интеллектуальной собственности (Роспатент, свидетельство о рег. №2006612529). Установка гиперссылки на материалы сайта не рассматривается как нарушением прав и согласования не требует. Юридическая поддержка сайта - юр.фирма «Интернет и Право».

Дополнительно