Коммутация индуктивной нагрузки в цепи переменного тока. Электрическая дуга. Принцип работы твердотельного реле

Перейти к каталогу Твердотельных реле KIPPRIBOR

Перейти к Помощнику подбора твердотельных реле KIPPRIBOR

Перейти к каталогу Радиаторы для твердотельных реле KIPPRIBOR

Роль твердотельных реле (SSR) в современных системах автоматики высока. В последние годы в различных областях техники (в автомобильной электронике, системах связи, бытовой электронике и промышленной автоматике) идет переход от построения систем коммутации на обычных электромагнитных реле, пускателях и контакторах к удобным, надежным способам коммутации с помощью твердотельных полупроводниковых реле.

Что нужно знать о твердотельных реле? Где применяется и как оно устроено? Ответы на эти вопросы Вы найдете на страницах нашего портала.

Твердотельное реле (ТТР) – это класс современных модульных полупроводниковых приборов, выполненных по гибридной технологии, содержащих в своем составе мощные силовые ключи на симисторных, тиристорных либо транзисторных структурах. Они с успехом используются для замены традиционных электромагнитных реле, контакторов и пускателей. Обеспечивают наиболее надежный методо коммутации цепей.

Классификация ТТР KIPPRIBOR по типу коммутируемой сети

ТТР для коммутации однофазной сети:

    могут использоваться для коммутации трехфазной сети при использщовании одного однофазного ТТР на каждую фазу; позволяют осуществлять коммутацию нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник»). Применение отдельного ТТР для каждой из 3-х фаз повышает надежность коммутации, а, следовательно, и всей системы управления в целом; позволяют коммутировать нагрузку резистивного и индуктивного типа;

ТТР для коммутации трехфазной сети:

    Позволяют осуществлять коммутацию нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник») позволяют коммутировать нагрузку только резистивного типа.

Токи утечки

В общем случае ток утечки – это ток, который протекает в землю или на сторонние проводящие части в электрической неповрежденной цепи.

Применительно к твердотельным реле ток утечки - это ток присутствующий в цепи нагрузки даже при отсутствии на твердотельном реле управляющего напряжения. Ток утечки в твердотельном реле обусловлен наличием встроенной RC-цепочки параллельно цепи нагрузки, через которую протекает ток, даже когда коммутационный элемент твердотельного реле находится в «выключенном состоянии».

RC-цепочка (снабберная RC цепь)

RC-цепочка (снабберная RC цепь) – электрическая цепь из последовательно включенных емкости (конденсатора) и сопротивления (применительно к твердотельным реле). RC - цепочка повышает надежность работы ТТР в условиях действия импульсных помех (перенапряжений) и ограничивает скорость нарастания напряжения на коммутационном элементе, что особо важно при коммутации индуктивной нагрузки.

Типы нагрузок твердотельных реле. Общая классификация

– электрическая нагрузка в виде сопротивления (резистора), на котором происходит преобразование электрической энергии в тепловую.

К такой нагрузке относится большинство типов нагревателей (ТЭНов). Нагрузка этого типа характеризуется относительно низкими пусковыми токами, что позволяет использовать для их коммутации ТТР с минимальным запасом по току (как правило с запасом в 25%). Но есть исключения, яркий пример - лампы накаливания, хоть и являются по сути резистивной нагрузкой, имеют достаточно высокие пусковые токи (до 12*Iном), что обусловлено очень большим разбросом сопротивления нихромовой спирали при разных температурах.

ТЭН – нагреватель в виде металлической трубы, заполненный теплопроводящим электрическим изолятором в центре которого установлена нагревательный элемент определенного сопротивления. В качестве нагревательного элемента обычно используется нихромовая нить. ТЭН относится к нагрузке резистивного типа с малыми пусковыми токами.

– электрическая нагрузка с большой индуктивной составляющей.

К такой нагрузке относятся электрические аппараты в составе которых имеются электрические катушки либо обмотки: соленоиды клапанов, трансформаторы, электродвигатели, дроссели и пр.

Особенностью индуктивной нагрузки являются высокие потребляемые токи при её включении (пусковые токи), вызванные переходными электрическими процессами. Пусковые токи высоко-индуктивной нагрузки могут превышать номинальный ток в несколько десятков раз и быть достаточно длительными, поэтому при применении ТТР для коммутации индуктивной нагрузки необходимо выбирать номинал ТТР с учетом пусковых токов нагрузки.

Классификация ТТР KIPPRIBOR по диапазону коммутируемого напряжения

    Стандартный диапазон коммутации:

40…440 VAC - этот широкий диапазон коммутируемого напряжения (в сети переменного тока) позволяет использовать твердотельные реле для управления нагрузками в различных областях промышленности;

    Диапазон коммутации постоянной нагрузки:

в серии HDxx25DD3 используется диапазон коммутируемого напряжения 20…250 VDC для коммутации нагрузки постоянного тока;

    Диапазоны регулирования напряжения при управлении нагрузкой:

В серии HDxx44VA используется​ диапазон регулирования нагрузки 10…440 VAC для регулирования напряжения с помощью внешнего переменного резистора;

В серии HDxx2210U используется диапазон регулирования напряжения 10…220 VAC.

Класс по напряжению – применительно к полупроводниковым приборам (тиристорам) обозначает максимально допустимое значение повторяющегося импульсного напряжения в закрытом состоянии и максимально допустимое значение обратного напряжения приложенного к полупроводниковому элементу. Класс по напряжению обычно маркируется цифрами в виде количества сотен вольт, например 9-й класс по напряжению будет означать, что данный полупроводниковый элемент выдерживает максимальное пиковое напряжение 900 Вольт. Для сети питания с номинальным напряжением 220В, рекомендательно использовать полупроводниковые элементы не ниже 9-го класса по напряжения.

ТТР KIPPRIBOR для коммутации больших можностей серий BDH и SBDH имеют 11 и 12 класс напряжения, что позволяет им выдерживать очень значительные перегрузки.

Классификация твердотельных реле KIPPRIBOR по типу управляющего сигнала

    управление напряжением постоянного тока (3…32 В); управление напряжением переменного тока (90…250 В); ручное управление выходным напряжением с помощью переменного резистора (470-560 кОм, 0,25-0,5 Вт); аналоговое управление выходным напряженим с помощью унифицированного сигнала напряжения 0…10В

Различные варианты управляющих сигналов позволяют применять твердотельные реле в качестве коммутационных элементов в разнотипных системах автоматического управления.

Классификация твердотельных реле по способу коммутации

Твердотельные реле с контролем перехода через ноль применяются для коммутации:

    резистивных (электрические нагревательные элементы, лампы накаливания), емкостных (помехоподавляющие сглаживающие фильтры, имеющие в своем составе конденсаторы) и слабоиндуктивных (катушки соленоидов, клапанов) нагрузок.

При подаче управляющего сигнала, напряжение на выходе такого реле появляется в момент первого пересечения линейным напряжением нулевого уровня. Это позволяет уменьшить начальный бросок тока, снизить уровень создаваемых электромагнитных помех и, как следствие, увеличить срок службы коммутируемых нагрузок.

Недостатком реле данного типа является невозможность коммутации высокоиндуктивной нагрузки, когда cos φ<0,5 (трансформаторы на холостом ходу).

Диаграмма срабатывания ТТР KIPPRIBOR с контролем перехода через ноль.

Твердотельные реле мгновенного (случайного) включения применяются для коммутации:

    резистивных (электрические нагревательные элементы, лампы накаливания); и индуктивных (маломощные двигатели, трансформаторы) нагрузок при необходимости мгновенного срабатывания.

Напряжение на выходе реле данного типа появляется одновременно с подачей управляющего сигнала (время задержки включения не более 1 миллисекунды), а значит включение реле возможно на любом участке синусоидального напряжения.

Однако реле данного типа имеют существенный недостаток – возникновение импульсных помех и начальных бросков тока при коммутации. После включения такое реле функционирует как обычное реле с контролем перехода через ноль.

Диаграмма срабатывания ТТР KIPPRIBOR мгновенного включения.

Твердотельные реле с фазовым управлением позволяют изменять величину выходного напряжения на нагрузке и управлять нагревательными элементами (регулирование мощности), лампами накаливания (регулирование уровня освещенности).

Диаграмма срабатывания ТТР KIPPRIBOR с фазовым управлением.

Типы выходных силовых элементов твердотельных реле KIPPRIBOR

Твердотельное реле KIPPRIBOR в зависимости от модификации могут иметь в качестве выходного ключа один из четырех силовых элементов:

симисторный выход (TRIAC) – применяется в реле серий MD, HD, HT всех модификаций с током до 60А (кроме DD3);

транзисторный выход (Transistor) – применяется в реле серии HD модификации DD3;

SCR-выход (SCR) – применяется в реле серий HDH и BDH всех модификаций;

тиристорный выход (Thyristor) – применяется в реле серий HD и HT всех модификаций c током свыше 60 А.

Симисторные выходы

Симисторные выходы используются в твердотельных реле на номинальные токи до 40 А включительно. Это обусловлено тем, что при двустороннем протекании большего тока, эффективного отвода тепла от кристалла симистора добиться невозможно. Симисторный выход имеют реле серий: MD, HD и HT с номинальными токами до 40 А. В качестве выходных элементов твердотельных реле на токи от 60 А используются только тиристоры, раздельно установленные на охлаждающей подложке. Это дает возможность обеспечить необходимый отвод тепла.

SCR выходы

SCR – общепринятое международное наименование полупроводникового ключа на базе триодного тиристора (или просто тиристора).

SCR выход – применительно к твердотельным реле обозначает тип выполнения полупроводникового ключа, когда на металлическом основании реле наносится изолирующая керамическая подложка а непосредственно на неё наносятся кристалы полупроводниковой структуры тиристора. Коммутирующий ключ, выполненный по данной технологии, позволяет максимально повысить эксплуатационные характеристики твердотельного реле в целом в сравнении с твердотельными реле выполненными с использованием обычных корпусных элементов.

Твердотельные реле серий HDH и BDH, рассчитанные на длительную коммутацию номинальных токов и работу с индуктивной нагрузкой, изготовлены на базе тиристорных SCR-выходов. SCR-выход представляет собой два разнесенных монокристалла, наращенных непосредственно на охлаждающей подложке. Это позволяет добиться еще более эффективного отвода тепла и, следовательно, повысить эксплуатационные характеристики устройства.

Варистор – полупроводниковый элемент, сопротивление которого зависит от приложенного напряжения. Благодаря резкому снижению своего сопротивления при превышения определенного уровня напряжения, такой элемент может использоваться в качестве ограничителя напряжения в электрических цепях. Один из основных параметров, по которому производится выбор варистора - классификационное напряжение, условная величина напряжения после которого происходит резкое изменение сопротивления варистора. Применительно для твердотельного реле варистор может использоваться для защиты самого реле от превышения допустимого для него уровня напряжения как в цепи нагрузки так и в цепи управления. Выбор варистора для защиты цепей ТТР можно производить по упрощенной схеме: Uваристора= Uрабочее* (1,6...1,9). Варистор преимущественно изготавливается в небольшом круглом корпусе с проволочными выводами, что позволяет успешно его монтировать непосредственно на клеммы ТТР.

Конструктивные особенности ТТР KIPPRIBOR

Основание ТТР - это теплопроводящая металлическая основа твердотельного реле, необходимая для отвода тепла от коммутационного элемента ТТР к радиатору охлаждения. Может быть изготавлено или из алюминиевого или из медного сплава.

Материал основания можно отличить визуально: основание изготовленное из алюминиевого сплава имеет матовый бледно-серый цвет, а основание из медного сплава напоминает вид матовой стали а иногда может иметь практически зеркальную шлифованную поверхность. Медное основание имеет несвойственный ему зеркально-стальной вид вследствие покрытия его дополнительным слоем никеля, что исключает окисление меди при длительном либо неверном хранении.

Основание из медного сплава - наиболее эффективное с точки зрения теплоотдачи

Поскольку теплопроводность меди значительно выше чем у алюминия, процесс отвода тепла от коммутационного элемента реле происходит значительно быстрее и эффективнее.

Следовательно ТТР с медным основанием (в отличии от реле с алюминиевым основанием), более эффективно выдерживает «пиковые» нагрузки и эффективнее работает в сложных условиях эксплуатации, однако медь имеет более высокую стоимость относительно алюминия.

Основание из алюминиевого сплава - более дешевое.

Поскольку алюминиевое основание менее эффективно по сравнению с медным, его применяют в бюджетных сериях продукции и исключительно для коммутации малых нагрузок.

Теплопроводящая паста – это паста на силиконовой основе обладающая хорошей теплопроводностью. Используется в электронных устройствах для отвода тепла от компонентов, смонтированных на радиаторе. Применение теплопроводящей пасты при монтаже твердотельного реле на радиатор охлаждения значительно улучшает теплопередачу от реле к радиатору. Повышение эффективности теплоотдачи происходит за счет заполнения мелких пустот между поверхностями реле и радиатора, поскольку идеально ровных поверхностей не бывает. Наиболее распространенной маркой теплопроводной пасты является –паста КПТ-8 в тюбиках, с рабочей температурой от -60 до +180гр.

Модификации твердотельных реле KIPPRIBOR

Серия KIPPRIBOR MDxxxZD3 однофазное малогабаритное ТТР для коммутации маломощной нагрузки. Самый бюджетный на рынке однофазных ТТР вариант для коммутации маломощной резистивной (до 12 А) и слабоиндуктивной (до 1,5 А) в самом миниатюрном корпусе на рынке...>>

Серии KIPPRIBOR HDхх44ZD3 и HDхх44ZA2 общепромышленные ТТР в стандартном корпусе. Однофазные универсальные твердотельные реле для коммутации в наиболее распространенных в промышленности диапазонах токов нагрузки (резистивной до 30 А, индуктивной до 4 А) для коммутации однофазной или трехфазной нагрузки с любой схемой включения («Звезда», «Звезда с нейтралью» и «Треугольник»)...>>

Серия KIPPRIBOR HDхх25DD3 ТТР для коммутации цепей постоянного тока. Однофазные тердотельные реле (ТТР) для коммутации цепей нагрузки постоянного тока (резистивной до 30 А, индуктивной до 4 А), а также для усиления сигнала при подключении нескольких ТТР к одному регулирующему прибору с небольшой нагрузочной способностью его выхода...>>

Серии KIPPRIBOR HDxx44VA и HDxx2210U ТТР для непрерывного регулирования напряжения. Однофазные тердотельные реле (ТТР) для непрерывного регулирования напряжения питания резистивной нагрузки до 30 А в диапазоне от 10 В до номинального значения пропорционально входному сигналу.

Типы управляющих сигналов:
переменный резистор 470 кОм, 0,5 Вт для HDxx44VA;
унифицированный сигнал напряжения 0…10В для HDxx2210U...>>

Серии KIPPRIBOR SBDHxx44ZD3 (малогабаритные) и BDHxx44ZD3 для коммутации мощной нагрузки в корпусе промышленного стандарта. Однофазные тердотельные реле (ТТР) для коммутации цепей питания мощных нагрузок резистивного и индуктивного типа в однофазной или трехфазной сети. Перекрывают самый большой на сегодняшний день в России диапазон токов нагрузки...>>

Серия KIPPRIBOR HDHxx44ZD3 для коммутации мощной нагрузки в стандартном корпусе. Однофазные общепромышленные тердотельные реле (ТТР) для коммутации цепей питания мощных нагрузок в однофазной или трехфазной сети (резистивной до 90 А, индуктивной до 12 А)...>>

Серии KIPPRIBOR HTхх44ZD3 и HTхх44ZA2 трехфазные ТТР для коммутации резистивной нагрузки. Трехфазные общепромышленные тердотельные реле (ТТР) для коммутации резистивной нагрузки (до 90 А) трехфазной либо трех однофазных цепей питания нагрузки. Обеспечивают одновременную коммутацию по каждой из 3-х фаз... >>

Нагрев реле при коммутации нагрузки обусловлен электрическими потерями на силовых полупроводниковых элементах. Но увеличение температуры накладывает ограничение на величину коммутируемого тока. Чем выше температура реле, тем меньший ток оно способно коммутировать. Достижение температуры в 40 0С не вызывает ухудшения рабочих параметров устройства. При нагреве реле выше 60 0С допускаемая величина коммутируемого тока сильно снижается. Нагрузка в этом случае может отключаться не полностью, а реле перейти в неуправляемый режим работы и выйти из строя.

Следовательно, при длительной работе реле в номинальных, и особенно, «тяжелых» режимах (при длительной коммутации токов свыше 5 А) требуется применение радиаторов или воздушного охлаждения для рассеивания тепла. При повышенных нагрузках, например, в случае нагрузки «индуктивного» характера (соленоиды, электромагниты и т. п.), рекомендуется выбирать реле с большим запасом по току - в 2-4 раза, а в случае применения твердотельных реле для управления асинхронным электродвигателем необходим 6-10 кратный запас по току.

При работе с большинством типов нагрузок включение реле сопровождается скачком тока различной длительности и амплитуды, величину которого необходимо учитывать при выборе реле.

Для более широкого класса нагрузок можно отметить следующие величины пусковых перегрузок:

    чисто активные (нагреватели) нагрузки дают минимально возможные скачки тока, которые практически устраняются при использовании реле с переключением в «0»; лампы накаливания, галогенные лампы при включении пропускают ток в 7…12 раз больше номинального; флуоресцентные лампы в течение первых секунд (до 10 с) дают кратковременные скачки тока, в 5…10 раз превышающие номинальный ток; ртутные лампы дают тройную перегрузку по току в течение первых 3-5 мин.; обмотки электромагнитных реле переменного тока: ток в 3…10 раз больше номинального в течение 1-2 периодов; обмотки соленоидов: ток в 10…20 раз больше номинального в течение 0,05 0,1 с; электродвигатели: ток в 5…10 раз больше номинального в течение 0,2 0,5 с; высокоиндуктивные нагрузки с насыщающимися сердечниками (трансформаторы на холостом ходу) при включении в фазе нуля напряжения: ток в 20…40 раз больше номинального в течение 0,05 0,2 с; емкостные нагрузки при включении в фазе, близкой к 90°: ток в 20…40 раз больше номинального в течение времени от десятков микросекунд до десятков миллисекунд.

Способность твердотельных реле выдерживать токовые перегрузки характеризуются величиной «ударного тока». Это амплитуда одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10.

Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока.

Выбор номинального тока твердотельного реле для конкретной нагрузки должен заключаться в соотношении между запасом по номинальному току реле и введением дополнительных мер по уменьшению пусковых токов (токоограничивающие резисторы, реакторы и т. д.).

Для повышения устойчивости твердотельного реле к импульсным помехам параллельно коммутирующим контактам ТТР имеется внешняя цепь, состоящая из последовательно включенных резистора и емкости (RC-цепь). Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле.

При коммутации индуктивной нагрузки использование защитных варисторов обязательно. Выбор необходимого наминала варистора зависит от величины напряжения питающего нагрузку, и осуществляется исходя из условия:

Uваристора = (1,6…1,9)хUнагрузки

Тип используемого варистора определяется на основе конкретных характеристик работы реле. Наиболее распространенными сериями отечественных варисторов являются: СН2-1, СН2-2, ВР-1, ВР-2.

Твердотельное реле обеспечивает надежную гальваническую изоляцию входных и выходных электрических цепей друг от друга, а также токоведущих цепей от элементов конструкции прибора, поэтому применение дополнительных мер изоляции цепей не требуется.

Таблица помощи в подборе твердотельного реле KIPPRIBOR...>>

Радиаторы для твердотельных реле KIPPRIBOR

Выбор радиаторов KIPPRIBOR РТР

Радиаторы охлаждения KIPPRIBOR РТР представлены несколькими моделями, отличающимися между собой габаритно-техническими характеристиками. Точный расчет требуемого радиатора охлаждения для конкретного случая применения ТТР - процесс непростой и связан с большим количеством математических вычислений.

Однако, большинство применений твердотельных реле – типовое (установка в вертикальный шкаф, нагрузка – нагревательные элементы). В этом случае можно упростить выбор радиатора, используя Таблицу «Выбор радиатора для ТТР».

ГЛАВНОЕ ПРАВИЛО ВЫБОРА РАДИАТОРА

При выборе радиатора охлаждения необходимо руководствоваться:

В первую очередь, способностью радиатора рассеивать тепло;

И только потом уделять внимание габаритным характеристикам.

ГЛАВНОЕ ПРАВИЛО МОНТАЖА РАДИАТОРА

Расположение ребер охлаждения радиатора всегда должно соответствовать направлению потоков движения воздуха – т. е. радиатор всегда должен быть расположен таким образом, чтобы его ребра охлаждения были параллельны потокам воздуха (естественным – снизу вверх или в соответствии с расположенным радом искусственным источником образования потоков воздуха).

Монтаж радиаторов РТР осуществляется на плоскость.

Привет, Geektimes!

Управление мощными нагрузками - достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь - чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью - при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле - второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус - они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала - чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки - пылесос мощностью 650 Вт.

Классическая схема - подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос - а лучше оба - должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль - задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего - ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер - RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле - ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent - Application Note 1399, «Maximizing the Life Span of Your Relays ». При работе реле на худший тип нагрузки - мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление - добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз .

А теперь сделаем ход конём - объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева - вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 - со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 - и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее - до самого выключения - он в работе участия не принимает. И не греется.

Выключение - в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей - NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов - то время, на которое симистор опережает реле в нашей схеме - ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Используются в качестве успешной альтернативы традиционным электромагнитным реле или контакторам. Устройства распространены в сфере коммутации однофазных и 3-фазных линий. Они применяются для бесконтактной коммутации отопительных устройств, освещения и прочего оборудования с резистивной нагрузкой с напряжением от 24 до 380 В для переменного тока для управления трансформаторами. Используются для индуктивной нагрузки, например, слаботочные двигатели или электромагниты.

Рис. №1. Внешний вид твердотельного реле и габаритные размеры.

Твердотельные реле подразделяются по типу управления, это реле переменного или постоянного тока с использованием переменного резистора и с помощью аналогового сигнала тока 4 – 20 мА. Реле для управления уровня напряжения включают или отключают нагрузку с помощью подачи или снятия с нагрузки полного сигнала.

Достоинства

  • Продолжительный период эксплуатации.
  • Отсутствие постороннего шума, неустойчивых контактных соединений, искрений и электродуги при переключении.
  • Надежное сопротивление изоляции в цепях нагрузки и цепях управления коммутационными аппаратами.
  • Отсутствие акустических помех.
  • Высокая степень энергосбережения.
  • Быстродействие (высокая скорость коммутации).
  • Небольшие габаритные размеры.
  • Отсутствие профилактики и технического обслуживания.

Высокие качественные электротехнические показатели делают возможным переход с электромагнитных реле и контакторов на твердотельные реле.

Рис. №2. Пример твердотельного реле с использованием SCR управления.

Недостатки и меры по защите релейного устройства

Существует несколько локальных факторов, при которых возможен выход устройства из строя – это:

  1. Перенапряжение.
  2. Токовая перегрузка и короткое замыкание.
  3. Перегрев из-за плохого теплоотвода (максимальная температура нагрева основания устройства не должна превышать 80 0 С).

Для нагрузки более 5 А на основание реле наносится специальная теплопроводящая паста. При I = 25А применяют вентилятор. Некоторые модели оборудованы защитой от перегрева, она отключает реле при превышении температуры тиристора – 120 0 С. Для защиты реле от перегруза по нагрузке используются предохранители на полупроводниках (срабатывают чрезвычайно быстро (2 мс) не позволяют развиться току к.з.).

Принцип работы твердотельного реле


Рис. №3. Схема работы с использованием твердотельного реле. В положении выключено, когда на входе наблюдается 0 В, твердотельное реле не дает пройти току через нагрузку. В положение включено, на входе есть напряжение, ток идет через нагрузку.

Основные элементы регулируемой входной цепи переменного напряжения.

  1. Регулятор тока служит для поддержки неизменного значения тока.
  2. Двухполупериодный мост и конденсаторы на входе в устройство служат для преобразования сигнала переменного тока в постоянный.
  3. Встроенный оптрон оптической развязки, на него подается питающее напряжение и через него протекает входной ток.
  4. Тригерная цепь служит для управления эмиссией света встроенного оптрона, в случае прекращения подачи входного сигнала ток прекратит свое протекание через выход.
  5. Резисторы, расположенные в схеме последовательно.

В твердотельных реле используется два распространенных типа оптических развязок – семистор и транзистор.

Симистор обладает следующими преимуществами: включение в состав развязки тригерной цепи и ее защищенность от помех. К недостаткам следует отнести дороговизну и необходимость больших величин тока на входе в устройство, необходимого для переключения выхода.

Рис. №4. Схема реле с семистором.

— не нуждается в наличии большого значения тока для переключения выхода. Недостаток – нахождение триггерной цепи вне развязки, а значит большее число элементов и слабая защита от помех.

Рис. №5. Схема реле с тиристором.


Рис. №6. Внешний вид и расположение элементов в конструкции твердотельного реле с транзисторным управлением.

Принцип работы твердотельного реле типа SCR полупериодного управления

При прохождении тока через реле исключительно в одном направлении величина мощности снижается почти на 50%. Для предотвращения этого явления используют два параллельно подключенных SCR, расположенные на выходе (катод соединяется анодом другого).

Рис. №7. Схема принципа работы полупериодного управления SCR

Типы коммутирования твердотельных реле

  1. Управление коммутационными действиями при переходе тока через ноль.


Рис. №8. Коммутация реле при переходе тока через ноль.

Преимущество способа – отсутствие помех при включении.

Недостатки – прерывание выходного сигнала, отсутствие возможности применения с нагрузками, обладающими высокой индуктивностью.

Используется для резистивной нагрузки в системах управления и контролирования нагревательных устройств. Использование в слабоиндуктивных и емкостных нагрузках.

  1. Фазовое управление твердотельным реле



Рис.№9. Схема фазного управления.

Преимущество: непрерывность и плавная регулировка, возможность изменять значение выходного напряжения.

Недостатки: присутствуют помехи при производстве переключений.Область использования: управление систем нагрева, индуктивные нагрузки (трансформаторы), инфракрасные выключатели (резистивная нагрузка).

Основные показатели для выбора твердотельных реле

  • Ток: нагрузки, пусковой, номинальный.
  • Тип нагрузки: индуктивность, емкость или резистивная нагрузка.
  • Тип напряжения цепи: переменное или постоянное.
  • Тип сигнала управления.

Рекомендации по подбору реле и эксплуатационные нюансы

Токовая нагрузка и ее характер служат главным фактором, определяющим выбор. Реле выбирается с запасом по току, в который входит учет пускового тока (он должен выдержать 10-кратное превышение тока и перегруз на 10 мс). При работе с обогревателем номинальный ток превышает номинальный ток нагрузки не менее чем на 40%. При работе с электродвигателем запас по току рекомендован быть больше номинала не менее чем в 10 раз.

Ориентировочные примеры выбора реле при превышении тока

  1. Нагрузка активной мощности, например, ТЭН – запас 30-40%.
  2. Электродвигатель асинхронного типа, 10 кратный запас по току.
  3. Освещение с лампами накаливания – 12 кратный запас.
  4. Электромагнитные реле, катушки – от 4 до 10 кратного запаса.

Рис. №10. Примеры выбора реле при активной нагрузке по току.

Такой электронный компонент электрических цепей как твердотельное реле становиться обязательным интерфейсом в современных схемах и обеспечивает надежную электрическую изоляцию между всеми задействованными электроцепями.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.



Что произойдет, если разомкнуть переключатель, управляющий током через индуктивность? Индуктивность, как известно, характеризуется следующим свойством: U = L(dI/dt), а из этого следует, что ток нельзя выключить моментально, так как при этом на индуктивности появилось бы бесконечное напряжение. На самом деле напряжение на индуктивности резко возрастает и продолжает увеличиваться до тех пор, пока не появится ток. Электронные устройства, которые управляют индуктивными нагрузками, могут не выдержать такого роста напряжения, особенно это относится к компонентам, в которых при некоторых значениях напряжения наступает «пробой». Рассмотрим схему, представленную


Рис. 1.94. Индуктивный «бросок».


на рис. 1.94. В исходном состоянии переключатель замкнут и через индуктивность (в качестве которой может выступать, например, обмотка реле) протекает ток. Когда переключатель разомкнут, индуктивность «стремится» обеспечить ток между точками А и В, протекающий в том же направлении, что и при замкнутом переключателе. Это значит, что потенциал точки В становится более положительным, чем потенциал точки А. В нашем случае разница потенциалов может достичь 1000 В, прежде чем в переключателе возникнет электрическая дуга, которая и замкнет цепь. При этом укорачивается срок службы переключателя и возникают импульсные наводки, которые могут оказывать влияние на работу близлежащих схем. Если представить себе, что в качестве переключателя используется транзистор, то срок службы такого переключателя не укорачивается, а просто становится равным нулю!


Чтобы избежать подобных неприятностей лучше всего подключить к индуктивности диод, как показано на рис. 1.95. Когда переключатель замкнут, диод смещен в обратном направлении (за счет падения напряжения постоянного тока на обмотке катушки индуктивности). При размыкании переключателя диод открывается и потенциал контакта переключателя становится выше потенциала положительного питающего напряжения на величину падения напряжения на диоде. Диод нужно подобрать так, чтобы он выдерживал начальный ток, равный току, протекающему в установившемся режиме через индуктивность; подойдет, например диод типа 1N4004.


Рис. 1.95. Блокирование индуктивного броска.


Единственным недостатком описанной схемы является то, что она затягивает затухание тока, протекающего через катушку, так как скорость изменения этого тока пропорциональна напряжению на индуктивности. В тех случаях, когда ток должен затухать быстро (например, быстродействующие контактные печатающие устройства, быстродействующие реле и т.д.), лучший результат можно получить, если к катушке индуктивности подключить резистор, подобрав его так, чтобы величина U и + IR не превышала максимального допустимого напряжения на переключателе. (Самое быстрое затухание для данного максимального напряжения можно получить, если подключить к индуктивности зенеровский диод, который обеспечивает затухание по линейному, а не по экспоненциальному закону.)


Рис 1.96. RС-«демпфер» для подавления индуктивного броска.


Диодную защиту нельзя использовать для схем переменного тока, содержащих индуктивности (трансформаторы, реле переменного тока), так как диод будет открыт на тех полупериодах сигнала, когда переключатель замкнут. В подобных случаях рекомендуется использовать так называемую RC-демпфирующую цепочку (рис. 1.96). Приведенные на схеме значения R и С являются типовыми для небольших индуктивных нагрузок, подключаемых к силовым линиям переменного тока. Демпфер такого типа следует предусматривать во всех приборах, работающих от напряжений силовых линий переменного тока, так как трансформатор представляет собой индуктивную нагрузку. Для защиты можно также использовать такой элемент, как металлоксидный варистор. Он представляет собой недорогой элемент, похожий по внешнему виду на керамический конденсатор, а по электрическим характеристикам - на двунаправленный зенеровский диод. Его можно использовать в диапазоне напряжений от 10 до 1000 В для значений токов, достигающих тысяч ампер (см.

Катушка индуктивности запасает энергию, прямо пропорциональную индуктивности L и квадрату тока I через катушку:

При включении индуктивности в цепь источника питания ток через катушку нарастает медленно (индуктивность не допускает броска тока) с постоянной времени, пропорциональной индуктивности катушки L и суммарному сопротивлению Кц всей последовательно с катушкой включенной цепи:

Таким образом, индуктивные нагрузки не создают проблем при включении (за исключением соленоидов с подвижным сердечником и электромоторов, где при включении индуктивность мала и пусковой ток может быть в десятки раз больше токов в установившемся режиме).

При отключении индуктивностей выделяется запасенная в катушке энергия, создавая напряжение самоиндукции, равное рабочему напряжению, умноженному на добротность катушки. Добротность индуктивной нагрузки бывает на практике от 0,5 (катушки с большим внутренним сопротивлением) до 50 (типичные соленоиды электромеханических замков, катушки контакторов и мощных реле, электромоторы и т.д). Напряжение самоиндукции катушки обычного промышленного реле с рабочим напряжением 24 VDC может превышать 1 киловольт!

При необходимости коммутации индуктивных нагрузок следует отдавать предпочтение реле, у которых:

Минимальное время выключения;

Максимальное расстояние между контактами;

Контакты выполнены из сплавов AgCdO или AgSnO.

Хорошо помогают гасить дугу специальные искрогасящие цепи, их рассмотрению будет посвящен особый раздел.