Для чего нужен выпрямительный диод. Выпрямительный диод - описание, параметры и характеристики. Теория управления p-n переходом

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение - Si) и германиевые (обозначение - Ge). У первых рабочая температура выше. Преимущество вторых - малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Выпрямительный диод - это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой - выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности - от 300 mA до 10 А;
  • большой - более 10 А.

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые - только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция

Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max - прямой ток, который максимально допустим, А.
  • U обрат max - обратное напряжение, которое максимально допустимо, В.
  • I обрат - обратный ток постоянный, мкА.
  • U прям - прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max - рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока

Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост

Диодный мост - это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

Выпрямительные диоды

В выпрямителях переменного напряжения наибольшее примене­ние находят германиевые и кремниевые полупроводниковые диоды. Основными методами получения р- n переходов для выпрямитель­ных диодов являются сплавление и диффузия.

Конструкция маломощного сплавного кремниевого диода пока­зана на рис. 6,1, а. Электронно-дырочный переход образуется вплавлением алюминия в кремний. Пластинка кремния с р- n пере­ходом припаивается к кристаллодержателю, являющемуся одно­временно основанием корпуса диода. К кристаллодержателю приваривается корпус со стеклянным изолятором, через который проходит вывод алюминиевого электрода.

Риc. 6.1. Конструкция выпрямительных диодов:

а - сплавной маломощный кремниевый диод (1 - внешние выводы; 2 - кристаллодержатель;

3 - корпус; 4 - стеклянный изолятор; 5 - алюминиевая проволока; 6 - кристалл; 7- припой);

б - мощный выпрямительный диод (1 - внешние выводы; 2 - стеклянный изолятор; 3 - корпус;

4 - кристалл; 5 - припой; 6 - кристаллодержатель);

в - выпрями­тельный столб

В диффузионных диодах р- n переход создается при высокой температуре диффузией примеси в кремний или германий из среды, содержащей пары примесного материала. Конструкции диффузион­ных и сплавных выпрямительных диодов аналогичны. Маломощные выпрямительные диоды имеют относительно небольшие габариты и массу и с помощью гибких выводов монтируются в схему. У мощ­ных диодов кристаллодержатель представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверх­ностью для обеспечения надежного теплового контакта с внешним теплоотводом (рис. 6.1, б). Между кристаллом и основанием обыч­но помещают пластинку из вольфрама или ковара, имеющую при­мерно такой же коэффициент линейного расширения, как и материал кристалла. Это способствует уменьшению механических напряже­ний в кристалле при изменении температуры.

Выпрямительные столбы представляют собой несколько специ­ально подобранных диодов, соединенных последовательно и зали­тых эпоксидной смолой. Внешний вид и схематическое устройство типичного выпрямительного столба показаны на рис. 6.1, в.

Работа полупроводникового выпрямительного диода основана на свойстве р- n перехода пропускать ток только в одном направ­лении.

Основной характеристикой полупроводниковых диодов являет­ся вольтамперная характеристика. Для сравнения на рисунке при­ведены типовые вольтамперные характеристики германиевого и кремниевого диодов. Кремние­вые диоды имеют во много раз меньшие обратные токи при одинаковом напряжении, чем германиевые. Допустимое об­ратное напряжение кремние­вых диодов может достигать 1500 В,

в то время как у германиевых оно лежит в пре­делах 100...400 В. Кремниевые диоды могут работать при тем­пературах -60...+150°С, а германиевые - 60...-85 °С. Это обусловлено тем, что при температурах выше 85 °С резко увели­чивается собственная проводимость германия, приводящая к недо­пустимому возрастанию обратного тока. Вместе с тем прямое падение напряжения у кремниевых диодов больше, чем у германие­вых. Это объясняется тем, что у германиевых диодов можно полу­чить величину сопротивления в прямом направлении в 1,5-2 раза меньшую, чем у кремниевых, при одинаковом токе нагрузки. По­этому мощность, рассеиваемая внутри германиевого диода, во столько же раз меньше. В связи с этим в выпрямительных уст­ройствах низких напряжений выгоднее применять германиевые диоды.

К основным стандартизированным параметрам выпрямительных диодов относятся:

Средний прямой ток / ПР.СР - среднее за период значение пря­мого тока.

Максимально допустимый средний прямой ток / ПР.СР. max .

Средний выпрямленный ток / ВП.СР - среднее за период значение выпрямленного тока, протекающего через диод (с учетом обратного тока).

Максимально допустимый средний выпрямленный ток I ВП.СР. max .

Постоянное прямое напряжение U ПР. - значение постоянного напряжения на диоде при заданном постоянном прямом токе.

Среднее прямое напряжение U ПР.СР - среднее за период зна­чение прямого напряжения при заданном среднем значении пря­мого тока.

Постоянное обратное напряжение U ОБР - значение постоян­ного напряжения, приложенного к диоду в обратном направлении.

Максимально допустимое постоянное обратное напряжение - U ОБР. max

Максимально допустимое импульсное обратное напряжение - U ОБР . И. max

Постоянный обратный ток / ОБР - значение постоянного тока, протекающего через диод в обратном направлении при заданном, обратном напряжении.

Средний обратный ток / ОБР,СР - среднее за период значение обрат­ного тока.

При разработке выпрямительных схем может возникнуть не­обходимость получить выпрямленный ток, превышающий предель­но допустимое значение для одного диода. В этом случае применяют параллельное включение однотипных диодов (рис. 6.3, а).

Для выравнивания токов, протекающих через диоды, последо­вательно с диодами включаются омические добавочные резисторы R ДОБ порядка нескольких Ом. Это позволяет искусственно уравнять прямые сопротивления диодов, которые для разных образцов при­боров могут быть существенно различными.

В высоковольтных цепях часто используют последовательное соединение диодов (рис. 6.3, б ). При таком соединении напряже­ние распределяется между всеми диодами.

Для обеспечения надеж­ной работы диодов параллельно каждому из них следует включить резистор (порядка 100 кОм) для выравнивания обратных сопротивлений. В этом случае напряжения на всех диодах будут рав­ными.

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:


Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.


Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением U IN (график 2) и идет через VD на нагрузку R.


Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой I обр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).


Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.


Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.


Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Выпрямительные диоды являются одним из наиболее распространенных типов полупроводниковых диодов. Работавыпрямительных диодов основана на явленииодносторонней проводимости p-n перехода иони предназначены для преобразования переменного тока в постоянный. Для выпрямительных диодов характерно небольшое сопротивление в проводящем состоянии, позволяющее пропускать большие токи. Для эффективного выпрямления выпрямительные диоды должны обеспечить наибольший выпрямленный ток и большое обратное напряжение. С целью получения большого прямого тока выпрямительные диоды выполняются с большой площадью контакта, т.е. плоскостными. Обычно допустимое обратное напряжение составляет 75…80 % пробивного напряжения. Большое допустимое обратное напряжение обеспечивается за счет большого удельного сопротивления базовой области материала полупроводника. В подавляющем большинстве случаев выпрямительные диоды работают на промышленных частотах (50 и 400 Гц), верхняя граница рабочих частот, как правило, не превышает 20 кГц.

Выпрямительные диоды, в основном, изготавливаются из германия и кремния. На рисунке 1.1 показана конструкция маломощного сплавного диода и его условно-графическое обозначение, а на рисунке 1.2 приведены вольт-

Рис.1.1. Условно графическое обозначение а) и конструкция маломощного диода б).

амперные характеристики германиевого а) и кремниевого б) полупровод-никовых выпрямительных диодов для двух температур. Из анализа этих характеристик видно, что:

Прямая ветвь вольтамперной характеристики кремниевых диодов расположена правее, чем для германиевых. Таким образом, пороговое напряжение, при котором наблюдается заметный прямой ток для кремниевого диода, выше германиевого, что несколько ухудшает выпрямительные свойства кремниевых диодов, особенно при выпрямлении напряжений с малой амплитудой;

При комнатной температуре величина обратного тока кремниевых диодов значительно меньше, чем у германиевых диодов, из-за меньшей

концентрации неосновных носителей в кремниевом полупроводнике;



Рис.1.2. Вольтамперные характеристики германиевого а) и кремниевого б) полупроводниковых выпрямительных диодов для двух температур

Вольтамперные характеристики диодов существенно зависят от температуры. При повышении температуры растет генерация пар носителей тока, что вызывает рост собственной проводимости полупроводника, растут прямой и обратный токи, причем обратный ток растет гораздо быстрее, чем прямой ток, и диод теряет свое основное назначение – одностороннюю проводимость. Установлено, что обратный ток увеличивается у германиевых диодов в 2 раза, а у кремниевых в 2,5 раза при увеличении температуры на каждые 10 0 С;



Влияние температуры на характеристики полупроводниковых диодов, изготовленных из германия и кремния, различно и для них существует некоторый интервал допустимых температур. Для германиевых диодов этот интервал составляет -60…+70 0 С, а для кремниевых диодов -60…+120 0 С;

Значение напряжения пробоя кремниевых диодов выше, чем у германиевых, при этом у германиевых диодов механизм пробоя обычно является тепловым, а у кремниевых – электрическим за счет лавинного пробоя.

Для изготовления выпрямительных диодов предпочтительным является кремний, имеющий более высокую допустимую температуру и более низкую цену по сравнению с германием. Однако в мощных низковольтных выпрямителях предпочтительнее германиевые диоды, поскольку они имеют меньшее пороговое напряжение, чем кремниевые. В ряде случаев в мощных выпрямителях применяют диоды Шоттки, в которых используется выпрямляющий контакт металла с полупроводником. Их изготавливают на основе кремния; благодаря меньшему пороговому напряжению (0,3 В вместо 0,7 В у обычных кремниевых диодов) диоды Шоттки обеспечивают более высокий коэффициент полезного действия, особенно в низковольтных выпрямителях.

Параметры, характеризующие свойства выпрямительных диодов, подразделяются на статические и динамические . К статическим относятся:

Постоянный прямой ток I пр при заданном прямом напряжении V пр на диоде;

Значение обратного тока I обр при заданном значении обратного напряжения V обр ;

Рабочий диапазон температур ;

Отводимая мощность , где Т пер и Т кор – температуры перехода и корпуса диода, R T - тепловое сопротивление переход-корпус;

Максимально допустимый прямой ток диода I пр.мак , который в зависимости от диода может составлять от нескольких десятков м А до нескольких к А;

Максимально допустимое обратное напряжение V обр..мак, которое составляет для диодов из германия до 400В, а из кремния до 1000В;

Максимальная мощность рассеяния , где I – ток, протекающий через диод; V – напряжение, приложенное к диоду;

Сопротивление постоянному току в заданной рабочей точке .

К динамическим параметрам относятся:

Средний выпрямленный ток I прср - среднее за период значение прямого тока;

Среднее прямое напряжение V прср при заданном значении среднего прямого тока;

Максимальная частота f мак , на которой I прср уменьшается в раз по сравнению на низкой частоте;

Максимальная емкость диода С мак ;

Внутреннее или дифференциальное сопротивление диода в рабочей точке , где - приращение напряжения и - приращения тока около рабочей точки;

Коэффициент выпрямления при заданном напряжении .

По величине среднего выпрямленного тока выпрямительные диоды делятся на три группы:

Маломощные (на ток до 0,3А);

Средней мощности (на ток от 0,3 до 10А);

Мощные (на ток свыше 10А).

Выпрямительные диоды и их рабочие режимы необходимо выбирать таким образом, чтобы выделяемая на переходе мощность не превышала мощность рассеяния. Из вольтамперной характеристики (рис.1.2) видно, что уже при сравнительно малых прямых напряжениях (менее одного вольта) прямой ток достигает значительной величины и, чтобы не произошел тепловой пробой, необходимо ограничить значение тока так, чтобы выполнялось условие .

Тепловой пробой возможно также избежать отводом выделяемого тепла, что в диоде малой мощности осуществляется непосредственно корпусом, в диодах средней мощности – специальными устройствами – радиаторами, в которые монтируется диод, а в мощных диодах используется принудительное воздушное или водяное охлаждение.

Помимо дискретных выпрямительных диодов в радиоэлектронной аппаратуре находят применение выпрямительные блоки, конструктивно представляющие собой завершенное устройство, состоящее из нескольких выпрямительных диодов, соединенных по определенной схеме. К ним относятся мостовые схемы, умножители напряжения, диодные сборки и т.д. В высоковольтных выпрямителях находят применение выпрямительные столбы, в которых выпрямительные диоды, обычно кремниевые, соединены последовательно и собраны в единую конструкцию с двумя выводами.