Простая схема зарядки для батареи 6f22. Делаем самодельное зарядное устройство для пальчиковых аккумуляторов. Технические характеристики зарядного устройства

Среди множества схем сборки зарядных устройств для аккумуляторов типа «Крона» нашлась и относительно простая и доступная. Кстати, 9-вольтовая батарейка, известная в России и странах СНГ как «Крона», имеет стандарт 6F22.

Аккумулятор состоит из 7 никель-металлгидридных батарей стандарта 4A, соединенных последовательно. Рекомендованный для заряда ток составляет не более 20-30 мА.

Зарядное устройство изготавливается путем переделки зарядника для мобильных телефонов китайского производства.

Существуют 2 вида недорогих зарядных устройств родом из Китая. Они импульсные, и в основе обоих лежат автогенераторные схемы, способные выдавать 5 В на выходе.

Первый вид самый распространенный. В нем отсутствует контроль напряжения на выходе, но подобрав стабилитрон, стоящий в таких схемах во входной цепи возле диода 1N4148, можно получить нужное напряжение. Обычно он двух видов - на 4,7 и 5,1 В.

Чтобы зарядить «Крону» необходимо напряжение порядка 10-11 В. Этого можно добиться, заменив стабилитрон на тот, что имеет соответствующее напряжение. Также рекомендуется поменять конденсатор, который расположен на выходе зарядки. Как правило, он на 10 В. Нужно поставить конденсатор на 16-25 В, имеющий емкость 47-220 мкФ.

Вторая разновидность таких схем имеет контроль напряжения на выходе, реализованное посредством установки оптопары и стабилитрона.

Взгляните на принцип переделки второй схемы.

Необходимо убрать все компоненты, имеющиеся после трансформатора, и оставить только узел, контролирующий напряжение на выходе. Этот узел состоит из оптопары, пары резисторов и стабилитрона.

Нужно произвести замену диодного выпрямителя, поскольку производители заявляют ток зарядки в 500 мА, а максимальный ток диода не более 200 мА, хотя пиковый ток около 450 мА. Опасно ведь! В общем, надо установить диод FR107. Таким образом, зарядка будет выдавать необходимое напряжение.

Следующее, что нужно сделать, - это собрать узел стабилизации тока, взяв за основу микросхему LM317. Вообще, можно обойтись одним гасящим резистором вместо того, чтобы собирать узел стабилизации.

Но в этом примере предпочтение отдается надежной стабилизации, ведь аккумулятор типа «Крона» не самый дешевый.

Резистор R1 влияет на ток стабилизации. Программу расчета можно скачать в Прикрепленных файлах, в конце статьи.

Принцип работы этой схемы заключается в следующем:

При подключении «Кроны» загорается светодиод.

На резисторе R2 создается падение напряжения. Постепенно ток в цепи уменьшается, и напряжение, позволяющее гореть светодиоду, в один момент становится недостаточным. Он попросту гаснет.

Это происходит в конце процесса зарядки, когда напряжение на аккумуляторе становится равным напряжению зарядника. Процесс заряда останавливается, и ток снижается почти до нуля.

Микросхему LM317 устанавливать на радиатор не требуется, в отличии от , ведь ток заряда очень мизерный.

Остается прикрепить к корпусу коннектор для аккумулятора, который можно изготовить из неработающей батарейки.


Если использовать преобразователь DC-DC, то получится зарядное устройство для «Кроны» через USB-порт. на подобии этого .



Прикрепленные файлы: .

Паяем штекер к экранированному аудио кабелю Универсальная защита для аккумуляторов


Батареи типоразмера 6F22, как аккумуляторные, так и состоящие из гальванических элементов, пока ещё достаточно широко применяются для питания различной малогабаритной маломощной радиоаппаратуры. Если "свежей" батареи хватает ненадолго, предпочтительно применить аккумуляторный вариант, но тогда возникает проблема с его зарядкой.

В настоящее время широко распространены сетевые (в основном зарядные устройства для сотовых телефонов) и автономные или аккумуляторные (power bank) источники питания с выходным напряжением 5 В и выходным USB-разъёмом. Поскольку у аккумуляторных батарей типоразмера 6F22 номинальное напряжение около 8,7 В, заряжать их от указанных выше источников питания без повышающего преобразователя напряжения невозможно. Предлагаемое устройство представляет собой такой преобразователь с контролем тока зарядки.

Схема устройства показана на рис. 1. Повышающий преобразователь собран на микросхеме DA1 и дросселе L1. Импульсы напряжения, формирующиеся на автотрансформаторе, выпрямляет диод VD1, а пульсации выпрямленного напряжения сглаживает конденсатор С3. Выходное напряжение такого преобразователя зависит от напряжения на управляющем входе OUT (вывод 2) микросхемы.

Рис. 1. Схема зарядного устройства

В исходном состоянии микросхема DA1 поддерживает на выходе (разъём Х2) напряжение, соответствующее максимальному для аккумуляторной батареи 6F22. По разным источникам - это около 9,8 В. Поскольку ток через резистор R3 не превышает 1 мА, напряжения на нём недостаточно для открывания транзистора VT1, поэтому светодиод HL2 погашен.

При подключении разряженной аккумуляторной батареи напряжение на движке резистора R2 уменьшится, поэтому выходное напряжение преобразователя станет увеличиваться. Поскольку ток зарядки протекает через батарею и резистор R3, напряжение на нём увеличится, транзистор VT1 откроется, светодиод HL2 включится и напряжение на входе OUT микросхемы DA1 увеличится. В результате выходное напряжение преобразователя уменьшится он перейдёт в режим стабилизации тока, значение которого задают подборкой резистора R3.

По мере зарядки аккумуляторной батареи напряжение на ней станет расти, а ток зарядки уменьшаться. Транзистор будет постепенно закрываться, яркость свечения светодиода HL2 уменьшаться, а выходное напряжение преобразователя расти. В какой-то момент времени транзистор закроется, светодиод HL2 погаснет, но зарядка аккумуляторной батареи продолжится с постепенно уменьшающимся током. Напряжение же на ней не превысит заранее установленного значения.

В этом устройстве ток зарядки на втором этапе зависит от напряжения аккумуляторной батареи, и чем ближе оно к максимальному, тем меньше ток, который уменьшается практически до нуля. Таким образом, в этом устройстве реализована зарядка по закону, близкому к закону Вудбриджа, в соответствии с которым в начале зарядки разряженного аккумулятора ток может в несколько раз превышать рекомендуемый (обычно 0,1...0,2 от ёмкости аккумулятора) для зарядки стабильным током. Такой способ зарядки позволяет зарядить батарею за несколько часов до ёмкости 70...80 %, а последующая дозарядка осуществляется уменьшающимся током без ущерба для неё, что может благоприятно сказаться на общей продолжительности её срока службы.

Чтобы не усложнять конструкции, индикатора окончания зарядки в нём нет. Светодиод HL2 индицирует переход устройства из режима стабилизации тока в режим стабилизации выходного напряжения. Светодиод HL1 - индикатор входного напряжения 5 В.

В устройстве применены постоянные резисторы Р1-4, МЛТ, С2-23, подстроечный - СП3-19, конденсаторы - К50-35 или импортные. Диод 1N4148 можно заменить любым диодом из серий КД510, КД521, КД522 или диодом Шотки серии 1N581X. Замена транзистора КТ3107Б - любой транзистор из серий КТ3107, PN2907. Светодиод HL1 может быть жёлтого, зёленого, синего или белого свечения повышенной яркости с диаметром корпуса 3 мм. Светодиод HL2 - аналогичный, но красного свечения. Дроссель намотан на кольцевом ферри-товом магнитопроводе от KJ1J1, его диаметр - 9,5 мм, высота - 3,3 мм. Обмотка содержит 20...22 витка провода ПЭВ-2 0,4 с отводом от 6-го витка. Разъём Х1 - обычный USB, Х2 - колодка от батареи "Крона".

Рис. 2. Чертёж печатной платы прибора

Большинство элементов установлены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 1...1,5 мм. Её чертёж показан на рис. 2. Микросхема установлена со стороны печатных проводников. В качестве корпуса использован корпус от батареи "Крона", и размеры платы рассчитаны для этого случая. Внешний вид смонтированной платы показан на рис. 3. Сначала в корпус вставляют разъём Х2 и крепят его с помощью клея, например эпоксидного. Затем вставляют плату и закрепляют с помощью термоклея, предварительно под неё со стороны печатных проводников подкладывают изолирующую прокладку из тонкого пластика размерами с плату. Сзади установлена штатная заглушка от "Кроны". В ней сделаны отверстия для светодиодов и кабеля питания. Если заглушка не пластмассовая, а металлическая, её надо изолировать от радиоэлементов на плате. Внешний вид устройства показан на рис. 4.

Рис. 3. Внешний вид смонтированной платы

Рис. 4. Внешний вид устройства

Налаживание начинают с установки движка подстроечного резистора R2 в среднее по схеме положение. Затем от лабораторного источника питания подают напряжение 5 В и с помощью вольтметра контролируют напряжение на выходе (разъёме Х2). Движком резистора R2 устанавливают его требуемое значение. Подключив разряженную до 7 В аккумуляторную батарею, подборкой резистора R3 устанавливают максимальный ток зарядки.

В случае возникновения короткого замыкания на выходе резистор R3 выполняет функцию ограничителя тока, поэтому на плате предусмотрена возможность установки двух резисторов R3" и R3"" мощностью по 0,5 Вт. Если блок питания 5 В имеет защиту от короткого замыкания или ограничение по току, мощность резистора R3 может быть уменьшена до 0,25.0,5 Вт.

Это устройство можно применить в качестве USB-источника питания с выходным напряжением 9 В, как замена батарее "Крона". Для этого взамен резистора R3 устанавливают проволочную перемычку, а элементы R4, VT1 и HL2 на плату не устанавливают. Резистором R2 устанавливают требуемое выходное напряжение. Но тогда надо обязательно поменять полярность напряжения на разъёме Х2. При этом максимальный выходной ток такого преобразователя - не более 50 мА. Но следует учесть, что при питании радиоприёмника преобразователь может создавать помехи приёму. Для их подавления в обе линии питания, между платой и разъёмом Х2, надо установить дроссели индуктивностью 100...500 мкГн, а непосредственно к выводам этого разъёма аккуратно припаять керамический конденсатор ёмкостью 100 нФ.

Уже более 4-х лет верой и правдой мне служит самодельное зарядное устройство для заряда аккумуляторов «аа» и «ааа» (Ni-Mh, Ni-Ca) с функцией разряда акб до фиксированного значения напряжения (1 Вольт). Блок разряда аккумуляторов создавался для возможности проведения КТЦ (Контрольно-тренировочный цикл), говоря проще: для восстановления емкости аккумуляторов потрепанных неправильными китайскими зарядниками с формулой последовательного заряда 2-х или 4-х акб. Как известно, такой способ заряда укорачивает жизнь аккумуляторам, если вовремя их не реставрировать.







Технические характеристики зарядного устройства:

  • Количество независимых каналов заряда: 4
  • Количество независимых каналов разряда: 4
  • Ток заряда: 250 (мА)
  • Ток разряда 140 (мА)
  • Напряжение отключения разряда 1 (В)
  • Индикация: светодиодная

Собиралось зарядное не на выставку, а что называется из подручных средств, то есть утилизировалось окружающее добро, которое и выкинуть жалко и хранить особо не зачем.

Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов:

  • Корпус от CD-Rom
  • Силовой трансформатор от магнитолы (перемотанный)
  • Полевые транзисторы с материнских плат и плат HDD
  • Прочие компоненты или покупались или выкусывались:)

Как уже отмечалось, зарядка состоит из нескольких узлов, которые могут жить абсолютно автономно друг от друга. То есть, одновременно можно работать с 8 аккумуляторами: от 1 до 4 заряжать + от 1 до 4 разряжать. На фото видно, что кассеты для аккумуляторов, установлены под форм-фактор «АА» в простонародье «пальчиковых аккумуляторов», если необходимо работать с «мини-пальчиковыми акб» «ААА» достаточно подложить под минусовую клему гайку небольшого калибра. При желании можно продублировать держателями под размер «ааа». Наличие акб в держателе индицируется светодиодом (отслеживается прохождение тока).

Блок заряда

Заряд осуществляется стабилизированным током , у каждого канала свой стабилизатор тока. Для того, что бы ток заряда был неизменным при подключении как 1 так и 2,3,4 аккумуляторов, перед стабилизаторами тока установлен параметрический стабилизатор напряжения. Естественно, кпд этого стабилизатора не на высоте и потребуется установить все транзисторы на теплоотвод. Заранее планируйте вентиляцию корпуса и размеры радиатора, учитывая то что в закрытом корпусе температура на радиаторе будет выше чем в разобранном состоянии. Можно модернизировать схему, введя возможность выбора тока заряда. Для этого схему необходимо дополнить одним переключателем и одним резистором на каждый канал, который будет увеличивать ток базы транзистора и соответственно повышать ток заряда проходящий через транзистор в аккумулятор. В моем случае блок заряда собран навесным монтажом.

Блок разряда акб


Блок разряда более сложен и требует точности в подборе компонентов. В основе лежит компаратор типа lm393, lm339 или lp239 функцией которого является подача сигнала «логической единицы», либо «ноля» на затвор полевого транзистора. При открытии полевого транзистора он подключает к аккумулятору нагрузку в виде резистора значение которого определяет ток разряда. При снижении напряжения на аккумуляторе до установленного порога отключения 1 (Вольт). Компаратор захлопывается и устанавливает на своем выходе логический ноль. Транзистор выходит из насыщения и отключает нагрузку от аккумулятора. Компаратор имеет гистерезис, который обуславливает повторное подключение нагрузки не при напряжении 1,01 (В) а при 1,1-1,15 (В). Смоделировать действие компаратора вы сможете скачав . Подобрав значения резисторов вы сможете перестроить устройство на нужное вам напряжение. Например: подняв порог отключения до 3 Вольт можно сделать разрядное для li-on и Li-Po аккумуляторов.
Вы можете она проектировалась для применения компаратора lm393 в DIP-корпусе. Питание компараторов должно осуществляться от стабилизированного источника напряжением 5 вольт, его роль выполняет TL-431 усиленный транзистором.

Инструкция

Ознакомьтесь с цоколевкой батареи «Крона». У самой батареи или аккумулятора этого типа, а также у заменяющего его блока питания, большая клемма - отрицательная, малая - положительная. У зарядного устройства, а также у любого прибора, питающегося от «Кроны», все наоборот: малая клемма - отрицательная, большая - положительная.

Убедитесь, что та батарея, которая имеется у вас в наличии, действительно является аккумуляторной.

Определите зарядный ток аккумуляторной батареи. Для этого его емкость, выраженную в миллиампер-часах, поделите на 10. Получится зарядный ток в миллиамперах. Например, для батареи емкостью в 125 мАч зарядный ток равен 12,5 мА.

В качестве источника питания для зарядного устройства используйте любой блок питания, напряжение на выходе которого составляет около 15 В, а максимально допустимый потребляемый ток не превышает зарядного тока аккумуляторной батареи.

Ознакомьтесь с цоколевкой стабилизатора LM317T. Если положить его лицевой стороной с маркировкой к себе, а выводами вниз, то слева будет регулировочный вывод, посередине выход, справа - вход. Микросхему установите на теплоотвод, который изолируйте от любых других токоведущих частей зарядного устройства, поскольку он электрически соединен с выходом стабилизатора.

Микросхема LM317T является стабилизатором напряжения. Чтобы использовать ее не по назначению - в качестве стабилизатора тока - между ее выходом и регулировочным выходом включите нагрузочный резистор. Его сопротивление рассчитайте по закону Ома, учитывая, что напряжение на выходе стабилизатора составляет 1,25 В. Для этого зарядный ток, выраженный в миллиамперах, подставьте в следующую формулу:
R=1,25/I
Сопротивление получится в килоомах. Например, для зарядного тока в 12,5 мА расчет будет выглядеть следующим образом:
I=12,5 мА=0,0125А

R=1,25/0,0125=100 Ом

Мощность резистора в ваттах рассчитайте, умножив падение напряжения на нем, равное 1,25 В, на зарядный ток, также предварительно переведенный в амперы. Округлите результат вверх до ближайшего значения из стандартного ряда.

Подключите плюс источника питания к плюсу аккумулятора, минус аккумулятора к входу стабилизатора, регулировочный вывод стабилизатора к минусу источника питания. Между входом и регулировочным выводом стабилизатора включите электролитический конденсатор на 100 мкФ, 25 В плюсом к входу. Зашунтируйте его керамическим любой емкости.

Включите блок питания и оставьте аккумулятор заряжаться на 15 часов.

Видео по теме

Батарейки «Крона» появились еще в Советском Союзе, но до сих пор остаются востребованными. Данный элемент питания незаменим для устройств с большим потреблением энергии, так как он выдает ток гораздо большей силы в сравнении с другими батарейками.

Характеристики батареек «Крона»

Элементы питания имеют типы АА, ААА, C, D, они имеют цилиндрическую форму и отличаются только размером. В отличие от них батарейка «Крона» имеет типоразмер PP3 и представляет собой параллелепипед. Солевые элементы питания отличаются своей недолговечностью, их нельзя использовать в высокотехнологичных приборах. Максимум, на что они рассчитаны - это часы либо другое несложное устройство. Элементы питания различают также по электрохимической системе. Большую работоспособность имеют щелочные и литиевые батарейки.

Мини-аккумуляторы «Крона» отличаются достаточно высокой производительностью, они имеют напряжение на выходе в районе девяти (в сравнении с ней литиевая или алкалиновая батарейка типа АА «выдает» всего 1,5 вольта). Батарейка «Крона» состоит из шести соединенных последовательно в одну цепочку полуторавольтовых батареек (на выходе получается девять вольт.) Элементы питания могут иметь силу тока до 1200 мА/ч, стандартная мощность составляет 625 мА/ч. Емкость батареек «Крона» будет изменяться в зависимости от типов химических элементов. Никель-кадмиевые элементы имеют емкость 50 мА/ч, никель-металл-гидридные батареи мощнее на порядок (175-300 мА/ч). Наибольшую емкость имеют литий-ионные элементы, их мощность составляет 350-700 мА/ч. Стандартный размер батареек «Крона» - 48,5х26,5х17,5 мм. Эти элементы питания используются в детских игрушках и пультах управления, их можно встретить в навигаторах, в шокерах.

Как зарядить батарейку «Крона»

В Советском Союзе выпускались угольно-марганцевые батарейки такого типоразмера, а также щелочные, которые имели более высокую цену и назывались «Корунд». Батареи выпускали из прямоугольных галетных элементов, для их изготовления использовался металлический корпус из луженой жести, дно из пластика или генитакса и контактная площадка. Простые одноразовые батареи «Крона» допускали небольшое количество дозарядок, хотя это не рекомендовалось изготовителем. Однако в связи с дефицитом этих элементов питания во многих книгах и журналах публиковались

Стоит сказать, что «Кроной» такой аккумулятор называют только в странах бывшего СССР. Название пошло от обычной батарейки такого же типоразмера, выпускаемой в то время.
Заряжать эти аккумуляторы рекомендуется током не более 20-30мА, иначе существенно укоротим их жизнь.

Схема простая и выполнена на базе китайского зарядника для мобильных телефонов. Дешевые зарядники бывают 2-х типов, но оба варианта импульсные и реализованы по автогенераторной схеме с выходным напряжением 5В.
Первая разновидность самая популярная. Здесь нет контроля выходного напряжения, но его возможно изменить подобрав стабилитрон, установленный во входной цепи около диода 1N4148. Обычно стоит номинал на 4,7В или 5,1В, а для зарядки 6F22 требуется 10 -11В, поэтому заменим его на другой с нужным значением. Следует заменить и выходной электролитический конденсатор, т.к. он рассчитан на 10В. Ставим на 16-25В, емкостью от 47 до 220мкФ.

Во второй разновидности предусмотрен контроль выходного напряжения через оптопару и стабилитрон. Стабилитрон может быть обычным или регулируемым, наподобие TL431. В моем образце стоит обычный на 4,7В.
Рассмотрим принцип переделки 2-ой разновидности. Предварительно убираем все, что находится после трансформатора, кроме узла контроля выходного напряжения. Т.е. оставляем стабилитрон, оптопару и пару резисторов. Заменил и выпрямительный диод, т.к. китайцы заявили выходной ток в 500мА, а поставили диод с максимальным током в 200мА (по даташиту), впаял FR107. Заменил выходной электролит на более высоковольтный и подобрал стабилитрон на 10В. В итоге на выходе имеем нужное напряжение около 10,5В.
После проверки переделанного зарядника собираем узел стабилизации тока на базе LM317. В принципе, для таких малых токов можно обойтись без микросхемы, а просто поставить гасящий резистор. Но я предпочел хорошую стабилизацию, все таки этот аккумулятор не такой уж дешевый продукт.

Схема стабилизатора такая же как для переделанного зарядочника шуруповерта.
Ток стабилизации зависит от R1. Программа расчета для LM317 тут. Светодиод HL1 загорится при подключеной нагрузке, т.к. есть падение напряжения на R2. По мерезаряда ток падает и в какой-то момент падение напряжения на R2 станет недостаточным для свечения HL1. Это произойдет в конце процесса зарядки, когда напряжение на батарее сравняется с напряжением на выходе зарядного устройства. Т.е. практически имеем автоматическое отключение.

Из-за мизерного тока LM317 на радиатор ставить не требуется. Для завершения конструкции остается прицепить на выходе коннектор, который можно взять разобрав негодную «Крону» и устанавить все в подходящий корпус.
И еще один очень простой вариант!