Что называется сваркой. Классификация сварки по физическому признаку. Что такое сварка? Что такое сварка определение коротко

После того как понятие «сварка металла» прочно вошло в современный обиход, не осталось практически ни одной индустрии, где бы она не применялась. Строительство в промышленных и малых масштабах стало главной отраслью, где используется соединение металла. Обусловлено это преимуществами сварки: ускорение процесса, прочность соединения, экономическая составляющая. Словом, все качества, при которых должна идти плодотворная работа.

Вопрос – где применяется сварка – практически риторический. Области, в которой соединяются металлы, настолько обширны, что уже перешли земное значение – особые технологии позволяют сваривать элементы конструкций, находясь в открытом космосе. Машиностроение и автомобильная промышленность сейчас не обойдутся без сварных технологий. Сельхозпроизводство и конструкторские бюро – еще одни из многочисленных отраслей, где применимо соединение конструкции посредством сваривания элементов. Нельзя забыть и о проводниках природных ресурсов – газа, воды, нефти и прочих. Для них тоже применяют сварные конструкции трубопроводов.

Важные условия для продуктивного процесса сварки в любых областях

  1. Конструкция требуемого изделия. Не секрет, что простую трубу приварить к другой не составит труда даже ученику. Тогда как трудоемкий процесс возведения грандиозных конструкций требует ответственности еще на стадии разработки. Учитывается все – условия применения, инструменты, техника безопасности и прочее.
  2. Организация процесса. Сейчас в пору технологического прогресса предприятия государственные или частные стремятся оборудовать процесс сварки по последнему слову техники. Рабочие места модернизируются, как и аппараты. Уже нет нужды протягивать большие и громоздкие кабели – технические инновации позволили создать компактные аппараты, позволяющие сваривать изделия в любых труднодоступных областях.
  3. Компетентность в процессах. Предприятия любого значения нуждаются в квалифицированных работниках в сферах, охватывающих сварку металлов. Для этого руководство часто прибегает к курсам повышения квалификации для оценки компетентности собственных работников, повышения уровня мастерства.

Особенности сварочного процесса в определенных областях

От того, насколько укомплектована работа по свариванию металлоконструкций, зависит готовое изделие. Качество зависит не только от прогрессивного оборудования, но и от методов сварки, материалов.

Некоторые особенности сварки полуавтоматами и трансформаторами

Горелка для полуавтоматической сварки плавящимся электродом: 1 - мундштук; 2 - сменный наконечник; 3 - электродная проволока; 4 - сопло.

Сварка штучными электродами применима в большинстве областей строительного дела. Не обходятся без них и монтажные, промышленные масштабы. Но тем не менее работа электродами не самая эффективная – слишком большой расход как металла, так и электродов. Процент потери составит до 30% от массы стержня. Лучше всего такую сварку применять в областях, не предусматривающих автоматизированного процесса или в местах труднодоступных в плане расположения.

Сварочные автоматы тоже должны отвечать условиям работы.

Громоздкие трансформаторы хороши для стационарного использования. В то время как ручные полуавтоматы завоевывают популярность своей мобильностью и успехом применения в любой области. К тому же трансформаторные типы тяжелы в практике начинающих сварщиков из-за нестабильности дуги, что не может не сказаться на качестве работы. В случае ответственности сварки, к примеру, несущих или технически важных конструкций, проще и качественнее выполнить работу выпрямителем, который будет оперативно реагировать на перемены тока.

Стоит знать, что применение ручной дуговой сварки может быть нестабильным из-за магнитного поля, которое возникает в результате соединения изделий полярных друг другу.

То есть при плавке металла с элементами, обладающими некоторым магнетизмом, следует учесть особенность такой работы – дуга может отклониться от свариваемой ванны и шов ляжет криво.

Качество швов в любых областях применения сварки должно быть на высоте. Особенно если речь идет об ответственных работах (трассы, трубопроводы и прочее). Стационары слишком зависят от подаваемого электричества, их применение может привести к швам, не отвечающим требованию. С такими работами лучше всего справятся полупроводниковые выпрямители, имеющие в своей конструкции стабилизатор напряжения, отчего работа ведется непрерывно. Однако мастера сварного дела утверждают, что трансформаторы (давнего года выпуска) гораздо надежнее в плане долговечности, нежели полупроводники и автоматы.

Электронные аппараты, применяют там, где важна точность и присутствует искусственное воздушное охлаждение. Всевозможные реле, транзисторы и микросхемы облегчат работы.

Техника безопасности важна при работе с любыми типами сварочных автоматов. Поэтому работа в условиях повышенного риска (на высоте, в воде или замкнутом пространстве) должна предусматривать встроенные ограничители тока в аппарате. Квалификация сварщика должна отвечать самым высоким требованиям.

Типы сварки для различных работ

  1. Плавка толстостенных металлов до 400 мм (мостовых конструкций, вагонов, цистерн железобетонной арматуры) идет с применением сварки под флюсом. Такое оборудование укомплектовано всевозможными источниками питания и ускоряет работу до 300 м/ч.
  2. Обыкновенная. В условиях цехового значения сварка происходит посредством плавящегося электрода в углекислом газе. Такое наплавление отличается отсутствием разбрызгивания, используется при клепании или изготовлении конструкций из горячей стали.
  3. Неповоротные стыки трубопроводов и магистралей ресурсного значения варят с применением порошковой проволоки. Этот способ хорош и для конструкций, сборка которых не обладает точностью для электронных агрегатов, занимающих различные пространственные положения.
  4. Конструкции и изделия могут быть из цветного металла, который, как известно, более мягок по сравнению с легированными сталями или углеродистыми, исключение может составить титан. Такие элементы лучше всего варить плавящимися или нет электродами в инертном газе.
  5. Многие конструкции совмещают в себе несколько металлов, поэтому будут применяться разные технологии сварки.
  6. Относительно новая электронно-лучевая и плазменная сварка. Стала пользоваться популярностью и в строительстве. Ее пользуются для плавки тугих и активных металлов, где долгосрочность процесса недопустима. Минимальный кислород, позволяет получить первоклассные швы.

Сварка: область применения

Строительство дач, домов, ремонт квартир и офисов также требует присутствия сварочных работ. Особенно с ними связана перепланировка. Тут годится любая сварка, не требующая громоздкого оборудования и особого расчета. Обычно применяют ручную дуговую, но к несущей арматуре она не подойдет из-за малой глубины сваривания и низкого тока. Электрошлаковая сварка подходит для вертикальных стыков, да и металл может варьироваться в толщине до 20 мм.

Шедевры сварного дела: особенности

Сварка может стать искусством.

Сейчас нередки инсталляции из металла, представляющие собой художественную ценность. Обычно такие объекты расположены на площадях или подъездных территориях.

Наряду с художественной ковкой, применение сварки также нашло здесь свое место. Некоторые композиции вызывают восхищение, с первого взгляда нельзя определить положение сварочных швов – настолько искусно они спрятаны.

Научиться азам сварочного дела можно легко, было бы желание, а вот постоянно повышать собственную квалификацию, может только истинный профессионал. Область применения сварки, настолько обширна, что невозможно все охватить и детально описать – она везде.

В строительстве, машиностроении, за пределами земли, в виде искусства. Некоторые ее подвиды применяют и в высокоточной медицине. А это значит, что переоценить масштабы, в которых участвует сварка, трудно.

Cварка металлов плавлением. Содержание:
  1. Сварка. Понятие, сущность процесса................... 3
  2. Сварка плавлением.................................................4
  3. Классификация электрической дуговой сварки....6
  4. Ручная дуговая сварка и оборудование для неё....8
  5. Технология ручной дуговой сварки.....................10
  6. Технология газовой сварки...................................14
  7. Приложение...........................................................17
  8. Литература.............................................................18

Сварка. Понятие, сущность процесса.

Сварка - это один из ведущих технологических процессов обработки металлов. Большие преимущества сварки обеспечили её широкое применение в народном хозяйстве. С помощью сварки осуществляется производство судов, турбин, котлов, самолётов, мостов, реакторов и других необходимых конструкций.

Сваркой называется технологический процесс получения неразъёмных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместным действием того и другого.

Сварное соединение металлов характеризует непрерывность структур. Для получения сварного соединения нужно осуществить межмолекулярное сцепление между свариваемыми деталями, которое приводит к установлению атомарной связи в пограничном слое.

Если зачищенные поверхности двух соединяемых металлических деталей при сжатии под большим давлением сблизить так, чтобы могло возникнуть общее электронное облако, взаимодействующее с ионизированными атомами обоих металлических поверхностей, то получаем прочное сварное соединение. На этом принципе основана холодная сварка пластичных металлов.

При повышении температуры в месте соединения деталей амплитуды колебания атомов относительно постоянных точек их равновесного состояния увеличиваются, и тем самым создаются условия более легкого получения связи между соединяемыми деталями. Чем выше температура нагрева, тем меньшее давление требуется для осуществления сварки, а при нагреве до температур плавления необходимое давление становится равным нулю.

Кусок твёрдого металла можно рассматривать как гигантскую молекулу, состоящую из атомов, размещённых в строго определённом, зачастую очень сложном порядке и прочно связанных в одно целое силами межатомного взаимодействия.

Принципиальная сущность процесса сварки очень проста. Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы. Процесс соединения после соприкосновения протекает самопроизвольно (спонтанно), без затрат энергии и весьма быстро, практически мгновенно.

Объединение отдельных объёмов конденсированной твёрдой или жидкой фазы в один общий объём сопровождается уменьшением свободной поверхности и запаса энергии в системе, а потому термодинамически процесс объединения должен идти самопроизвольно, без подведения энергии извне. Свободный атом имеет избыток энергии по сравнению с атомом конденсированной системы, и присоединение свободного атома сопровождается освобождением энергии. Такое самопроизвольное объединение наблюдается на объёмах однородной жидкости.

Гораздо труднее происходит объединение объёмов твёрдого вещества: приходится затрачивать значительные количества энергии и применять сложные технические приёмы для сближения соединяемых атомов. При комнатной температуре обычные металлы не соединяются не только при простом соприкосновении, но и при сжатии значительными усилиями. Две стальные пластинки, тщательно отшлифованные и пригнанные, подвергнутые длительному сдавливанию усилием в несколько тысяч килограммов, по снятии давления легко разъединяются, не обнаруживая никаких признаков соединения. Если соединения возникают в отдельных точках, они разрушаются действием упругих сил при снятии давления. Соединению твёрдых металлов мешает, прежде всего, их твёрдость, при их сближении действительное соприкосновение происходит лишь в немногих физических точках, и расширение площади действительного соприкосновения достаточно затруднительно.

Металлы с малой твёрдостью, например, свинец, достаточно прочно соединяются уже при незначительном сдавливании. У более важных для техники металлов твёрдость настолько велика, что поверхность действительного соприкосновения очень мала по сравнению с общей кажущейся поверхностью соприкосновения, даже на тщательно обработанных и пригнанных поверхностях.

На процесс соединения сильно влияют загрязнения поверхности металла - окислы, жировые плёнки и пр., а также слои адсорбированных молекул газов, образующиеся на свежезачищенной поверхности металла под действием атмосферы почти мгновенно. Поэтому чистую поверхность металла, лишенную слоя адсорбированных газов, можно сколько-нибудь длительно сохранить лишь в высоком вакууме. Такие естественные условия имеются в космическом пространстве, где металлы получают способность довольно прочно свариваться или “схватываться” при случайных соприкосновениях. В обычных же, земных условиях приходится сталкиваться с отрицательным действием, как твёрдости металлов, так и слоя адсорбированных газов на поверхности. Для борьбы с этими затруднениями техника использует два основных средства: нагрев и давление. Поскольку данная работа посвящена сварке металлов посредством плавления, сварка давлением ниже подробно освещаться не будет.

Сварка плавлением.

Сварка плавлением осуществляется нагревом свариваемых кромок до температуры плавления без сдавливания свариваемых деталей.

При нагреве с повышением температуры снижается твёрдость металла и возрастает его пластичность. Металл, твёрдый и малопластичный при комнатной температуре, при достаточном нагреве может стать очень мягким и пластичным. Дальнейшим повышением температуры можно довести металл до расплавления; в этом случае отпадают все затруднения, связанные с твёрдостью металла; объёмы жидкого металла самопроизвольно сливаются в общую сварочную ванну.

Во многих случаях на процесс сварки существенно влияют загрязнения поверхности металла: преимущественно окислы и жировые плёнки. Эти загрязнения, попадая в сварное соединение, могут снижать качество сварки. Они, в отличие от адсорбированных газов, могут быть удалены с поверхности металла механически (щётками, абразивами и т.д.) или химически (растворителями, травителями, и флюсами).

Специфическим для сварки средством очистки служат флюсы, растворяющие окислы при повышенных температурах. Помимо устранения загрязнений с поверхности металла, принимаются меры к уменьшению загрязнения металла в процессе сварки, в первую очередь окислами. Для этой цели используются флюсы, шлаки, защитные газы, вдуваемые в зону сварки.

Противоречие между теоретической возможностью сварки металлов без затрат энергии и практической необходимостью затрат и довольно значительных может быть объяснено энергетической моделью процесса сварки, схематически изображённой на рис 1.

Рис. 1. Энергетическая модель процесса сварки

Атом на свободной поверхности металла в положении 1 имеет энергию h, атом в объёме металла в положении 3 - меньшую энергию h0; соединение объёмов металла с уничтожением свободной поверхности сопровождается освобождением энергии на атом: Dh=h-h0. Но для перемещения из положения 1 в положение 3 атом должен преодолеть энергетический порог и пройти положение 2 с энергией H. Для преодоления энергетического порога атому нужно подвести энергию DH=H-h, без чего невозможно преодоление порога и соединение объёмов металла. Энергия DH расходуется на упругую и пластическую деформации металла, необходимую для сближения поверхностей металла, на его нагрев разрушение плёнки адсорбированных газов и т.д. Нагрев снижает энергетический порог, препятствующий соединению твёрдых металлов; расплавление сводит высоту порога почти к нулю, делая возможным соединение без затрат энергии. Соединение атомов при сварке металлов происходит обычно в очень тонком слое, толщиной в несколько атомных диаметров, и зона сварки имеет плёночный характер. Увеличение ширины зоны сварки может быть произведено за счёт таких процессов, как диффузия, растворение, кристаллизация, протекающих более медленно во времени и постепенно распространяющихся по объёму металла.

Простейшие виды сварки плавлением известны с глубокой древности, например литейная сварка. Современная схема сварки плавлением показана на рис. 2

Рис. 2. Схема сварки плавлением.

К соединяемым деталям в месте сварки подводят сварочное пламя; производят местное расплавление деталей до образования общей сварочной ванны жидкого металла. После удаления сварочного пламени металл ванны быстро охлаждается и затвердевает, в результате детали оказываются соединёнными в одно целое. Перемещая пламя по линии сварки, можно получить сварной шов любой длины. Сварочное пламя должно иметь достаточную тепловую мощность и температуру; сварочную ванну нужно образовывать на сравнительно холодном металле: теплопроводность металлов высока и быстро образовать ванну может только очень горячее пламя. Опыт показывает, что для сварки стали толщиной несколько миллиметров температура сварочного пламени должна быть не ниже 2700-3000°C. Пламя с меньшей температурой или совсем не образует ванны или образует её слишком медленно, что даёт низкую производительность сварки и делает её экономически не выгодной. Источники тепла, развивающие столь высокие температуры, появились относительно недавно.

Сварочное пламя расплавляет как металл, так и загрязнения на его поверхности, образующиеся шлаки всплывают на поверхность ванны. Горячее пламя сильно нагревает металл на поверхности, значительно выше точки плавления; в результате меняется химический состав металла и его структура после затвердевания; изменяются и механические свойства. Затвердевший металл ванны, так называемый металл сварного шва обычно по своим свойствам отличается от основного металла, незатронутого сваркой. Сварка плавлением отличается значительной универсальностью; современными сварочными источниками легко могут быть расплавлены почти все металлы, возможно соединение разнородных металлов.

Характерный признак сварки плавлением; выполнение её за один этап-нагрев сварочным пламенем, в отличие от сварки давлением.

Классификация электрической дуговой сварки.

Все существующие способы сварки, как уже упоминалось выше, можно разделить на две основные группы: сварку давлением (контактная, газопрессовая, трением, холодная, ультразвуком) и сварку плавлением (газовая, термитная, электродуговая, электрошлаковая, электронно-лучевая, лазерная).

Самое широкое распространение получили различные способы электрической сварки плавлением, а ведущее место занимает дуговая сварка, при которой источником теплоты служит электрическая дуга.

Электрическую сварку плавлением в зависимости от характера источников нагрева и расплавления свариваемых кромок можно разделить на следующие основные виды сварки, схема 1 (см. приложение):

  1. электрическая дуговая, где источником тепла является электрическая дуга;
  2. электрошлаковая, где основным источником теплоты является расплавленный шлак, через который протекает электрический ток;
  3. электронно-лучевая, при которой нагрев и расплавление кромок соединяемых деталей производят направленным потоком электронов, излучаемых раскалённым катодом;
  4. лазерная, при которой нагрев и расплавление кромок соединяемых деталей производят направленным сфокусированным мощным световым лучом микрочастиц-фотонов.

При электрической дуговой сварке основная часть теплоты, необходимая для нагрева и плавления металла, получается за счет дугового разряда, возникающего между свариваемым металлом и электродом. Под действием теплоты дуги кромки свариваемых деталей и торец плавящегося электрода расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания дугового разряда, получается от источников питания дуги постоянного или переменного тока. Классификация дуговой сварки производится в зависимости от степени механизации процесса сварки, рода тока и полярности, типа дуги, свойств электрода, вида защиты зоны сварки от атмосферного воздуха и др.

По степени механизации различают сварку вручную, полуавтоматическую и автоматическую сварку. Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определенной длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.

При ручной сварке указанные операции, необходимые для образования шва, выполняются рабочим-сварщиком вручную без применения механизмов.

При полуавтоматической сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.

При автоматической сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.

По роду тока различают дуги, питаемые постоянным током прямой (минус на электроде) или обратной (плюс на электроде) полярности или переменным током. В зависимости от способов сварки применяют ту или иную полярность. Сварка под флюсом и в среде защитных газов обычно производится на обратной полярности.

По типу дуги различают дугу прямого действия (зависимую дугу) и дугу косвенного действия (независимую дугу). В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором - дуга горит между двумя электродами. Основной металл не является частью сварочной цепи и расплавляется преимущественно за счёт теплоотдачи от газов столба дуги. В этом случае питание дуги осуществляется обычно переменным током, но она имеет незначительное применение из-за малого коэффициента полезного действия дуги (отношение полезно используемой тепловой мощности дуги к полной тепловой мощности).

По свойствам электрода различают способы сварки плавящимся электродом и неплавящимся (угольным, графитовым и вольфрамовым). Сварка плавящимся электродом является самым распространённым способом сварки; при этом дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. Этот вид сварки можно производить одним или несколькими электродами. Если два электрода подсоединены к одному полюсу источника питания дуги, то такой метод называют двухэлектродной сваркой, а если больше - многоэлектродной сваркой пучком электродов. Если каждый из электродов получает независимое питание - сварку называют двухдуговой (многодуговой) сваркой. При дуговой сварке плавлением КПД дуги достигает 0,7-0,9.

По условиям наблюдения за процессом горения дуги различают открытую, закрытую и полуоткрытую дугу. При открытой дуге визуальное наблюдение за процессом горения дуги производится через специальные защитные стёкла - светофильтры. Открытая дуга применяется при многих способах сварки: при ручной сварке металлическим и угольным электродом и сварке в защитных газах. Закрытая дуга располагается полностью в расплавленном флюсе - шлаке, основном металле и под гранулированным флюсом, и она невидима. Полуоткрытая дуга характерна тем, что одна её часть находится в основном металле и расплавленном флюсе, а другая над ним. Наблюдение за процессом производится через светофильтры. Используется при автоматической сварке алюминия по флюсу.

По роду защиты зоны сварки от окружающего воздуха различают следующие способы сварки: без защиты (голым электродом, электродом со стабилизирующим покрытием), со шлаковой защитой (толстопокрытыми электродами, под флюсом), шлакогазовой (толстопокрытыми электродами), газовой защитой (в среде газов) с комбинированной защитой (газовая среда и покрытие или флюс). Стабилизирующие покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу. Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки. Защитные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги, легировать и рафинировать металл шва.

Наибольшее применение имеют средне - и толстопокрытые электроды, предназначенные для ручной дуговой сварки и наплавки, изготовляемые в специальных цехах или на заводах.

Применяются также магнитные покрытия, которые наносятся на проволоку в процессе сварки за счёт электромагнитных сил, возникающих между находящейся под током электродной проволокой и ферромагнитным порошком, находящемся в бункере, через который проходит электродная проволока при полуавтоматической или автоматической сварке. Иногда это ещё сопровождается дополнительной подачей защитного газа.

Ручная дуговая сварка и оборудование для неё.

Наибольший объём среди других видов сварки занимает ручная дуговая сварка- сварка плавлением штучными электродами, при которой подача электрода и перемещение дуги вдоль свариваемых кромок производится вручную. Схема процесса показана на рис. 3

Рис. 3. Ручная дуговая сварка металлическим электродом с покрытием

Дуга горит между стержнем электрода 1 и основным металлом 7. Под действием теплоты дуги электрод и основной металл плавятся, образуя металлическую сварочную ванну 4. Капли жидкого металла 8 с расплавляемого электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода 2, образуя газовую защиту 3 вокруг дуги и жидкую шлаковую ванну на поверхности расплавленного металла.

Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги металл сварочной ванны затвердевает и образует сварной шов 6. Жидкий шлак по мере остывания образует на поверхности шва твёрдую шлаковую корку 5, которая удаляется после остывания шва. Для обеспечения заданного состава и свойств шва сварку выполняют покрытыми электродами, к которым предъявляют специальные требования (стальные покрытые электроды для ручной дуговой сварки и наплавки изготовляют в соответствии с ГОСТ 9467-75).

Сварочный пост для ручной дуговой сварки оснащается источником питания, токоподводом, необходимыми инструментами, принадлежностями и приспособлениями.

Сварочные посты могут быть стационарными и передвижными. К стационарным относят посты, расположенные в цехе, преимущественно в отдельных сварочных кабинах, в которых сваривают изделия небольших размеров. Передвижные сварочные посты, как правило, применяют при монтаже крупногабаритных изделий (трубопроводов, металлоконструкций, и т.д.) и ремонтных работах. При этом часто используют переносные источники питания. В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой.

Основным рабочим инструментом сварщика при ручной сварке служит электрододержатель, который предназначен для зажима электрода и провода сварочного тока. Применяют электрододержатели пружинного, пластинчатого и винтового типов (рис. 4)

Согласно ГОСТ 14651-78 электрододержатели выпускаю трёх типов в зависимости от силы сварочного тока: 1 типа - для тока 125 А; 2- 125-315 А; 3-315-500 А.

Для подвода тока от источника питания к электрододержателю и изделию используют сварочные провода. Сечения проводов выбирают по установленным нормативам для электротехнических установок (5-7 А/мм^2).

К вспомогательным инструментам для ручной сварки относятся: стальные проволочные щётки для зачистки кромок перед сваркой и для удаления с поверхности швов остатков шлака, молоток-шлакоотделитель для удаления шлаковой корки, особенно с угловых и корневых швов в глубокой разделке, зубило, набор шаблонов для проверки размеров швов, стальное клеймо для клеймения швов, метр, стальная линейка, отвес, угольник, чертилка, мел, а также ящик для хранения и переноски инструмента.

Технология ручной дуговой сварки.

Выбор режима.

Под режимом сварки понимают совокупность контролируемых параметров, определяющих условия сварки. Параметры режима сварки подразделяют на основные и дополнительные. К основным параметрам режима ручной сварки относят диаметр электрода, величину, род и полярность тока, напряжение на дуге, скорость сварки. К дополнительным относят величину вылета электрода, состав и толщину покрытий электрода, положение электрода и положение изделия при сварке.

Диаметр электрода выбирают в зависимости от толщины металла, катета шва, положения шва в пространстве.

Примерное соотношение между толщиной металла S и диаметром электрода dэ при сварке в нижнем положении шва составляет:

S, мм......1-2 3-5 4-10 12-24 30-60dэ, мм....2-3 3-4 4-5 5-6 6-8

Сила тока в основном зависит от диаметра электрода, но также от длины его рабочей части, состава покрытия, положения сварки. Чем больше ток, тем больше производительность, т. е. большее количество наплавленного металла:G=aнIсвt, где G- количество наплавленного металла, г; aн- коэффициент наплавки, г/(А ч); Iсв- сварочный ток, А; t-время, ч.

Однако при чрезмерном токе для данного диаметра электрода электрод быстро перегревается выше допустимого предела. Что приводит к снижению качества шва и повышенному разбрызгиванию. При недостаточном токе дуга неустойчива, часто обрывается, в шве могут быть непровары. Величину тока можно определить по следующим формулам: при сварке конструкционных сталей для электродов диаметром 3-6 мм Iд=(20+6dэ)dэ; для электродов диаметром менее 3 мм Iд=30dэ, где dэ диаметр электрода, мм. Сварку швов в вертикальном и потолочном положениях выполняют, как правило, электродами диаметром не более 4 мм. При этом сила тока должна быть на 10- 20 % ниже, чем для сварки в нижнем положении. Напряжение дуги изменяется в сравнительно узких пределах-16-30 В.

Техника сварки.

Дуга может возбуждаться двумя приёмами: касанием впритык и отводом перпендикулярно вверх или “чирканьем” электродом как спичкой. Второй способ удобнее. Но неприемлем в узких и неудобных местах.

В процессе сварки необходимо поддерживать определённую длину дуги, которая зависит от марки и диаметра электрода. Ориентировочно нормальная длина дуги должна быть в пределах Lд=(0,5-1,1)dэ, где Lд - длина дуги, мм; dэ - диаметр электрода, мм.

Длина дуги оказывает существенное влияние на качество сварного шва и его геометрическую форму. Длинная дуга способствует более интенсивному окислению и азотированию расплавляемого металла, увеличивает разбрызгивание, а при сварке электродами основного типа приводит к пористости металла.

В процессе сварки электроду сообщается движение в трёх направлениях. Первое движение - поступательное, по направлению оси электрода. Этим движением поддерживается постоянная (в известных пределах) длина дуги в зависимости от скорости плавления электрода.

Второе движение-перемещение электрода вдоль оси валика образования шва. Скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов. При отсутствии поперечных движений электрода получается так называемый ниточный валик, на 2-3 мм больший диаметра электрода, или узкий шов шириной еЈ1,5dэ.

Третье движение - перемещение электрода поперёк шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.

Рис. 5. Траектория движения конца электрода при ручной дуговой сварке.

Поперечные колебательные движения конца электрода (рис. 5)

определяются формой разделки, размерами и положением шва, свойствами свариваемого материала, навыком сварщика. Для широких швов, получаемых с поперечными колебаниями, e=(1,5­5)dэ.

Для повышения работоспособности сварных конструкций, уменьшения внутренних напряжений и деформаций большое значение имеет порядок заполнения швов.

Под порядком заполнения швов понимается как порядок заполнения разделки шва по поперечному сечению, так и последовательность сварки по длине шва.

По протяжённости все швы условно можно разделить на три группы: короткие - до 300 мм, средние-300-1000, длинные - свыше 1000 мм.

В зависимости от протяженности шва, материала, требований к точности и качеству сварных соединений сварка таких швов может выполняться различно рис 6:

Короткие швы выполняют на проход - от начала шва до его конца. Швы средней длины варят от середины к концам или обратно ступенчатым методом. Швы большой длины выполняют двумя способами: от середины к краям (обратноступенчатым способом) и вразброс.

При обратноступенчатом методе весь шов разбивается на небольшие участки длиной по150-200 мм, на каждом участке сварку ведут в направлении, обратном общему направлению сварки. Длина участков обычно равна от 100 до 350 мм. В зависимости от количества проходов (слоёв), необходимых для выполнения проектного сечения шва, различают однопроходный (однослойный) и многопроходный (многослойный) швы (рис.30).

С точки зрения производительности наиболее целесообразными являются однопроходные швы, которые обычно применяются при сварке металла небольших толщин (до 8-10 мм.) с предварительной разделкой кромок.

Сварку соединений ответственных конструкций большой толщины (свыше 20-25 мм.), когда появляются объёмные напряжения и возрастает опасность образования трещин, выполняют с применением специальных приёмов заполнения швов “горкой” или “каскадным” методом.

При сварке “горкой” сначала в разделку кромок наплавляют первый слой небольшой длины 200-300 мм, затем второй слой, перекрывающий первый и имеющий в 2 раза большую длину. Третий слой перекрывает второй и длиннее его на 200-300 мм. Так наплавляют слои до тех пор, пока на небольшом участке над первым слоем разделка не будет заполнена. Затем от этой “горки” сварку ведут в разные стороны короткими швами тем же способом. Таким образом, зона сварки всё время находится в горячем состоянии, что позволяет предупредить появление трещин. “Каскадный” метод является разновидностью горки.

Соединения под сварку собирают в приспособлениях, чаще всего с прихватками. Сечение прихваточного шва составляет примерно 1/3 от сечения основного шва, длина его 30-50 мм. Угловые швы сваривают “в угол” или “в лодочку” (рис.7).

Рис. 7. Положение электрода и изделия при выполнении угловых швов:

а – сварка в симметричную “лодочку”, б – в несимметричную “лодочку”, в – “в угол” наклонным электродом, г - с оплавлением кромок.

При сварке “в угол” проще сборка, допускается большой зазор между свариваемыми деталями (до 3 мм), но сложнее техника сварки, возможны дефекты типа подрезов и наплывов, меньше производительность, так как приходится за один проход сваривать швы небольшого сечения (катет

aral-oil.narod.ru

Сварные соединения

Крановщикам и стропальщикам

Сварные соединения

Что называется сваркой?

Сваркой называется способ образования неразъемного соединения металлических деталей путем нагревания их до плавления жди пластического состояния с последующим сдавливанием свариваемых деталей или без него.

Что называется сварным швом?

Сварным швом называется затвердевший после сварки металл, соединяющий сваренные детали.

Как подразделяются сварные швы в зависимости от расположения свариваемых деталей?

В зависимости от расположения свариваемых деталей сварные швы подразделяются на стыковые, внахлестку, тавровые, угловые, с отбортовкой кромок и др. Причем соединение встык производят без скосов кромок свариваемых деталей и со скосами, которые бывают V-образные, Х-образнйе и др., так как форма скоса зависит от толщины свариваемого металла и способа сварки.

Как подразделяются сварные швы (соединения) по положению в пространстве? По положению’ в пространстве сварные швы (соединения) подразделяются на нижние, горизонтальные, вертикальные и потолочные, а по отношению к действующим на шов усилиям - фланговые, лобовые (или торцовые), комбинированные и др.

За счет чего обеспечивается монолитность сварного соединения?

Монолитность сварного соединения обеспечивается за счет молекулярного взаимодействия поверхностных слоев соединяемых металлических деталей. Чтобы соединить две детали в одно целое, нужно сблизить их поверхности так, чтобы возникли силы сцепления между молекулами расположенными в пограничном‘слое, обладающие свободными связями. Такая возможность может быть только в том случае, если расстояние меж: ду поверхностями деталей будет не более 0,4 нанометра. Добиться такого сближения механическим способом пока невозможно, так как даже при самой тщательной обработке поверхностей на них остаются неровности, поэтому соприкосновение поверхностей будет не сплошным, а лишь в отдельных точках.

Кроме того, молекулы, расположенные в пограничных частях детали, улавливают посторонние микроча: стицы из окружающей среды, что ведет к образованию на поверхностях окисных и органических пленок, ослабляющих свободные силы сцепления поверхностей.

При сварке деталей или узлов эти неровности с по-, верхностей устраняют, а покрывающие их загрязнения удаляют, в результате чего достигается наименьшее расстояние между поверхностями и между ними по всей площади устанавливается физический контакт.

Какие существуют способы сварки?

В зависимости от метода получения сварного соединения различают три основных способа: сварка плавлением, сварка давлением, сварка плавлением и давлением. По виду энергии, потребляемой для создания сварного соединения, различают электрическую, механическую и химическую.

Каким образом осуществляется сварка плавлением?

Сварка плавлением осуществляется путем нагрева кромок деталей, установленных впритык друг к другу с некоторым зазором между ними, до расплавленного состояния и соединения их в жидком виде. Причем из многочисленных разновидностей сварки плавлением наиболее широкое применение пока получили электро- дуговая сварка, электрошлаковая и газовая. В свою очередь, электродуговая сварка металлическим электродом осуществляется ручным способом и автоматическим (автоматическая электродуговая сварка металлическим электродом под флюсом).

Каким образом производится электродуговая сварка ручным способом?

Электродуговая сварка ручным способом производится путем пропускания электрического тока электрической дуги, который возникает между свариваемой деталью, подключенной к одному из полюсов источника питания постоянного или переменного тока, и электродом, подсоединенным ко второму полюсу того, же источника. Сила тока дуги в зависимости от вида и режима сварки может быть от десятка до сотен ампер, а температура сварочной дуги достигает 6000 °С и более. При этом расплавленный металл соединяемых деталей и дополнительный металл (электрод), рас: плавляясь самопроизвольно, без всякого на них давления, сливаются в общую так называемую сварную ванну. По мере перемещения электрода вдоль свариваемой детали сварочная ванна затвердевает, образуя кристаллы - упорядоченную систему атомов и молекул. Закристаллизировавшийся металл соединяет детали в единое целое.

Во время сварки жидкий металл интенсивно взаимодействует с азотом и кислородом воздуха, что снижает прочность сварного шва и приводит к образованию дефектов. Чтобы изолировать зону сварного шва от окружающего воздуха, а порой для присадки в щод вещества, улучшающего его качество, поверхнос электродов покрывают специальным составом.

Каким образом осуществляется автоматическая элек тродуговая сварка металлическим электродом по флюсом?

Автоматическая электродуговая сварка металлич~ ским электродом под флюсом” осуществляется сварочЧ ной установкой автоматически, при этом дуга гори под слоем флюса в жидком пузыре расплавленного шлака, который полностью защищает расплавленную; ванну от воздействия воздуха. Сварка выполняете», электрическим током до 3000 А, а плотность тока Ш сварочной проволоке диаметром 1,2-5 мм в несколько раз больше, чем в электроде при ручной электро- дуговой сварке. Этот способ сварки более экономичен по сравнению с ручной дуговой сваркой при непрерывных прямолинейных и кольцевых швах значительной, протяженности и особенно в массовом производстве.

Каким образом осуществляется электрошлаковая сварка металлическим электродом?

Электрошлаковая сварка металлическим электродом осуществляется теплом, выделяющимся при прохождении электрического тока через шлаковую ванну от электрода к изделию.

Какие достоинства имеют сварные соединения по сравнению с заклепочными?

Сварные соединения по сравнению с заклепочными имеют следующие достоинства: обеспечивают существенную экономию металла и значительно снижают трудоемкость их изготовления, так как при сварочных работах отпадают такие трудоемкие работы, как изготовление заклепок, разметка и пробивка или сверление отверстий для заклепок и чеканка швов. Кроме того, сварочные работы в настоящее время во многих случаях выполняются автоматами, которые резко снижают трудоемкость сварочных работ.

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Виды сварки и как правильно варить сваркой

Процесс сварки представляет собой неразъемное соединение деталей из металла. Процесс возможен только в результате нагрева металла в том месте, где должна проводиться стыковка изделия. Металл должен нагреваться до состояния плавления. Сварным швом называется расплавленный и застывший материал. Необходимо помнить о том, что поддаются свариванию не все виды металлов. Для сваривания скорее подходят однородные материалы, такие как чугун или медь - их можно сваривать только с идентичным материалом. Это возможно лишь потому, что в жидком состоянии они хорошо смешиваются и образуют слои. К примеру, медь со свинцом сварить невозможно, поскольку такие металлы между собой не смешиваются, как и магний с железом или алюминий с висмутом. Если необходимость в их сварке все же появляется, то к ним добавляют такие металлы, которые имеют способность растворяться с каждым компонентом проведенных выше металлов. В статье поговорим о том как правильно варить сваркой и о видах сваривания металлов.

Виды сваривания металла

  • При сварке плавлением кромки расплавленных деталей как бы образуют сварочную ванну, то есть общий расплав, который и становится сварочным швом. Место сварки металлов можно нагреть или электрической дугой, или горелкой, или плазмой. Такая сварка называется дуговой.
  • Холодная сварка или сварка давлением предполагает соединение металлов, которое происходит за счет такого сокращения расстояния между атомами, когда начинают действовать силы взаимного притяжения.

Сегодня в строительной и промышленной сферах самым распространенным видом считается электродуговая сварка металлов. При таком способе материалы плавятся под воздействием так называемой сварочной дуги. Последняя, как правило, появляется между металлом для сваривания и проволокой, которая является присадочным материалом

Дуговая сварка тоже, в свою очередь, имеет свои способы:

  • полуавтоматический способ дуговой сварки производится автоматической подачей в зону сваривания сварочной проволоки. Человек выполняет остальные операции, куда входит придание шву нужной формы, перемещение электрода и прекращение работ;
  • автоматически способ сварки - человек просто подготавливает детали, включает и выключает оборудование;
  • ручной способ дуговой сварки предполагает выполнение всех операций вручную.

Дуговая сварка - виды

Дуговая сварка производится по следующим принципам:

  • Сварка осуществляется плавящимся электродом - сварочная дуга расплавляет присадку и кромки изделия. Расплав постепенно заполняет зазор, после кристаллизации которого образуется сварной шов. Чтобы в какой-то степени защитить расплав от окисления, используется специальное покрытие, наносимое на присадку. Под воздействием высокой температуры покрытие превращается в шлак и покрывает металл.
  • Сварка проводится неплавящимся электродом, в частности, в процессе сварки меди и алюминия, а также твердых сплавов и тонколистовой стали.

Как образуется сварочная дуга?

Низкое напряжение сварочной дуги объясняется ее короткой длиной. При использовании электрода из металла для обеспечения устойчивости горения дуги нужно получить напряжение 18-28В. Угольный электрод требует напряжения в 30-35В. Устойчива та сварочная дуга, которая горит без обрывов и равномерно, для которой повторного зажигания не требуется.

Как правильно варить сваркой?

Для начала проводятся подготовительные работы. Правятся детали как вручную, так и с помощью различных листоправильных вальцев. Затем производится разметка, согласно чертежу, посредством измерительных инструментов. При разметке помните, что в процессе сварки детали могут укорачиваться. Далее необходимо провести резку и очистку деталей.

Последняя операция проводится на основном и присадочном материалах. Они очищаются от окалин, масел, жиров и ржавчины. В противном случае, даже мельчайшие загрязнения могут привести к дефектам шва, к понижению его прочности и убыванию надежности изделия.

Следующий этап подразумевает подготовку кромок, форма которых зависит от толщины самого листа. Для сборки деталей необходимо придерживаться той правильной последовательности, которая поможет не смешивать операции сборки.

По материалам https://moyakovka.ru/process/kak-pravilno-varit-svarkoi.html

moscowsad.ru

Классификация основных способов сварки

Сваркой называется процесс получения неразъемного соединения деталей путем применения местного нагрева.

Сварным соединением называется соединение двух деталей, полученное при помощи сварки.

Сварной шов - это часть сварного соединения, которая образуется из расплавленного в процессе сварки и затем затвердевшего металла.

Основным металлом называют металл, из которого изготовлены свариваемые детали.

При газовой сварке в месте расположения шва расплавляется основной металл, но в большинстве случаев его бывает недостаточно для заполнения всего зазора между деталями. Поэтому в сварочное пламя вводят присадочную проволоку, которая, расплавляясь, дает дополнительный жидкий металл, образующий шов. Сечение шва делают большим по толщине, чем толщина основного металла. Это утолщение называют усилением шва.

В месте нагрева деталей сварочным пламенем образуется углубление в расплавленном металле, которое называют сварочной ванной.

В настоящее время существует много различных способов сварки, которые классифицируются по различным признакам. В зависимости от степени нагрева свариваемый металл может быть или в пластическом (тестообразном), или в расплавленном (жидком) состоянии. В первом случае для осуществления процесса сварки необходимо приложить к свариваемому изделию усилие (сварка давлением). Во втором случае расплавленный металл свариваемых изделий и присадочного прутка образует общую ванну, после остывания которой сварка оказывается осуществленной без применения механического воздействия (сварка плавлением).

Следует отметить, что имеются такие способы сварки, при которых металл либо совсем не нагревается (холодная сварка глубокой деформацией), либо нагревается до температур, при которых металл не доводится даже до пластического состояния (ультразвуковая сварка).

Кузнечная (горновая) сварка

В процессе кузнечной сварки концы, подлежащие соединению, нагреваются в горне до температуры пластического состояния, затем накладываются один на другой и проковываются. Для удаления окалины разогретые концы посыпают кварцевым песком. При проковке шлак * легко выдавливается из места соединения. Кузнечная сварка, самый старый способ сварки, в настоящее время применяется редко.

Газопрессовая сварка. При газопрессовой сварке кромки свариваемых деталей (стержней, труб, рельсов) нагреваются ацетиленокислородным пламенем сразу по всему контуру специальной многопламенной горелкой до пластического состояния или до оплавления и затем подвергаются сжатию. Основным достоинством газопрессовой сварки является ее высокая производительность. Газопрессовая сварка применяется при строительстве магистральных газопроводов и нефтепроводов, на железнодорожном транспорте и в машиностроении.

Контактная сварка. Детали включаются в электрическую цепь сварочной машины и через них пропускается электрический ток большой силы и низкого напряжения. При этом в месте стыка (контакта) деталей выделяется тепло, которое нагревает их до расплавления или до пластического состояния. Контактная сварка, в зависимости от способа выполнения, подразделяется на стыковую, точечную и шовную.

Стыковая сварка применяется для соединения стержней, рельсов, труб и т. п. Детали закрепляются в электродах. Затем через них пропускается ток от вторичного витка 4 сварочного трансформатора. В месте соприкосновения стержни нагреваются до высокой температуры, после чего ток выключают, стержни сжимаются и детали свариваются.

Точечная сварка применяется для сварки листовых конструкций, у которых сварные соединения должны быть прочными, но не плот-

Шлаками называют неметаллический покров на поверхности расплавленного или нагретого до пластического состояния металла. Обычно шлаки представляют собой сплавы различных окислов металлов и металлоидовными. При точечной сварке свариваемые листы укладывают кромками друг на друга и зажимают между медными электродами. Через электроды пропускается электрический ток от сварочного трансформатора. Металл под электродами сильно нагревается и при сжатии электродов сваривается в одной точке.

Роликовая сварка применяется для сварки листовых конструкций, требующих плотно-прочных швов, например различных резервуаров, баков, тары и других изделий массового производства. При роликовой сварке свариваемые листы укладывают так же, как при точечной сварке, между электродами, имеющими форму роликов. К роликам подводится электрический ток. При прохождении листов между вращающимися роликами образуется сплошной плотный шов, состоящий из ряда сварных точек, перекрывающих друг друга.

Сварка трением осуществляется на станках, подобных токарным. После закрепления двух цилиндрических деталей в зажимах станка детали сводятся вплотную и с большой силой прижимаются друг к другу. При быстром вращении одной из деталей в месте стыка их в результате трения выделяется большое количество тепла, достаточное для нагрева концов деталей до пластического состояния (1200° С).

После нагрева до такой температуры вращение прекращается, детали дополнительно сжимаются и свариваются.

Этот способ сварки впервые предложен в 1956 г. рабочим-новатором А. И. Чудиковым.

Термитной сваркой называется процесс получения неразъемного соединения деталей, при котором для нагрева металла применяется термит.

Термит представляет собой механическую смесь, состоящую из 78% (по весу) порошка железной окалины (окись железа) и 22% порошка чистого алюминия. При сгорании термита развивается температура около 3000° С. В результате сгорания термита получается расплавленное железо и жидкий шлак (окись алюминия), которыми заливают свариваемые концы. Сжигание термита производится в огнеупорном тигле.

Различают термитную сварку давлением и термитную сварку плавлением. В первом случае жидкий металл и шлак выливаются из тигля в форму, в которой установлены концы свариваемых деталей. Нагретые до пластического состояния стержни сжимаются специальным прессом и свариваются.

Во втором случае свариваемые части заформовываются с зазором, величина которого зависит от размера сечения свариваемых концов. Этот зазор заполняется жидким металлом из тигля; давление при этом не прикладывается.

Термитная сварка нашла применение при сварке трамвайных рельсов, при ремонте и изготовлении некоторых судовых Деталей и т. д.

Электрическая дуговая сварка. При дуговой электрической сварке тепло, необходимое для расплавления металла в месте сварки, выделяется электрической дугой, возникающей между электродом и основным металлом при пропускании через них электрического тока. Электрод (угольный или металлический) закрепляется в специальном электрододержателе. В дуге развивается температура порядка 6000° С, которая обеспечивает быстрый нагрев и расплавление свариваемых кромок. При дуговой сварке угольным электродом (способ Бенардоса) заполнение шва производится расплавленным металлом присадочной проволоки, которая вводится в зону дуги.

При дуговой сварке металлическим электродом (способ Славянова) соединение кромок осуществляется расплавленным металлом электрода. Процесс сварки может вестись как на постоянном, так и на переменном токе. Для защиты расплавленного металла от насыщения азотом и кислородом воздуха, для обогащения металла шва необходимыми примесями и повышения устойчивости горения дуги при сварке применяются металлические электроды, покрытые слоем специальной обмазки. Для питания дуги электрическим током применяются сварочные генераторы постоянного тока и трансформаторы переменного тока. Простота процесса, значительная скорость сварки и высокое качество соединения обеспечили повсеместное внедрение электродуговой сварки.

Более прогрессивным методом является автоматическая электросварка, при которой дуга горит под слоем сыпучего флюса, выполняющего ту же роль, что и обмазка при ручной электродуговой сварке.

Электрошлаковая сварка

Свариваемые кромки деталей располагают вертикально с некоторым зазором. В зоне сварки к кромкам прижаты медные башмаки, которые удерживают флюс и расплавленный металл сварочной ванны. Башмаки движутся снизу вверх одновременно с механизмом сварочной головки, непрерывно подающим сварочную проволоку в зону сварки. Дуга вначале горит между проволокой и металлом ванны. Когда флюс расплавится, дуга гаснет, и ток проходит только через расплавленный флюс. При установившемся процессе сварки флюс, проволока и кромки свариваемого металла расплавляются теплом, выделяющимся при прохождении тока через расплавленный флюс. По мере заполнения зазора металлом формирующие башмаки поднимаются вверх. Жидкий металл затвердевает снизу вверх и образует шов 6.

При электрошлаковой сварке достигается очень высокая производительность труда.

Этот способ сварки разработан институтом электросварки им. Е. О. Патона.

Дуговая сварка в среде защитного газа. Для защиты наплавленного металла от воздействия окружающего воздуха дуговую электросварку иногда производят в струе защитного газа. Сущность способа дуговой сварки в струе защитного газа заключается в том, что на дугу и свариваемое место направляется струя газа, защищающего металл от воздействия воздуха.

В качестве защитного газа можно применять водород, гелий, аргон и углекислый газ.

Углекислый газ как наиболее дешевый защитный газ находит все большее применение при сварке углеродистых сталей.

Атомно-водородная сварка

При этом способе деталь расплавляется так называемой дутой косвенного действия, горящей между двумя вольфрамовыми электродами. Электроды вставлены в мундштуки, по которым к дуге подается водород. Сварочный шов получается путем расплавления присадочной проволоки. Таким образом, дуга и жидкий металл сварочной ванны защищены водородом от вредного воздействия кислорода и азота воздуха. Водород под действием тепла дуги расщепляется на атомы, а последние, соприкасаясь с более холодным металлом, вновь соединяются в молекулы. При этом выделяется большое количество тепла, идущее на дополнительный нагрев металла сварочной ванны. Этот способ сварки применяют для сварки металлов небольшой толщины и для сварки цветных металлов.

Газовая сварка. Этот способ сварки состоит в том, что для нагревания и плавления свариваемых кромок используется пламя, полученное при сжигании горючего газа в смеси с кислородом. Для получения газокислородной смеси, ее сжигания и выполнения сварки применяют специальные сварочные горелки.

Газовая сварка относится к сварке плавлением. Заполнение зазора между кромками свариваемых деталей производится в основном расплавленным металлом присадочной проволоки.

Газовая сварка широко применяется в различных отраслях народного хозяйства, особенно при сварке стали малой толщины, цветных металлов, чугуна и при ремонте различных Деталей.

Пламя газовой горелки используется для правки покоробленных деталей, для очистки металла от ржавчины, окалины, краски, для поверхностной закалки различных деталей, а также может быть использовано для местной термической обработки сварных швов. С помощью газового пламени часто наносят различные покрытия (металлические и неметаллические) на поверхности деталей.

Особое и совершенно самостоятельное место в промышленности занимает кислородная (газовая) резка металлов.

Контрольные вопросы

1. Какое значение имеет сварка в народном хозяйстве и ее преимущества перед клепкой?

2. Кто из русских ученых и инженеров является основоположником способов электрической сварки металлов?

3. Что называют сварным соединением, сварным швом, основным и присадочным металлом, сварочной ванной, усилением шва?

4. Какие способы сварки вы знаете?

5. В чем сущность процесса газовой сварки?

6. В чем сущность процесса термитной сварки?

7. Как осуществляется кузнечная сварка?

8. В чем сущность газопрессовой сварки?

9. В чем сущность автоматической сварки под флюсом?

10. Как осуществляется атомноводородная сварка?

11. Какие существуют способы контактной сварки и их сущность?

Сваркой называется технологический процесс получения неразъёмных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместным действием того и другого.

Сварное соединение металлов характеризует непрерывность структур . Для получения сварного соединения нужно осуществить межмолекулярное сцепление между свариваемыми деталями, которое приводит к установлению атомарной связи в пограничном слое.

Если зачищенные поверхности двух соединяемых металлических деталей при сжатии под большим давлением сблизить так, чтобы могло возникнуть общее электронное облако, взаимодействующее с ионизированными атомами обоих металлических поверхностей, то получаем прочное сварное соединение. На этом принципе основана холодная сварка пластичных металлов.

При повышении температуры в месте соединения деталей амплитуды колебания атомов относительно постоянных точек их равновесного состояния увеличиваются, и тем самым создаются условия более легкого получения связи между соединяемыми деталями. Чем выше температура нагрева, тем меньшее давление требуется для осуществления сварки, а при нагреве до температур плавления необходимое давление становится равным нулю.

Кусок твёрдого металла можно рассматривать как гигантскую молекулу, состоящую из атомов, размещённых в строго определённом, зачастую очень сложном порядке и прочно связанных в одно целое силами межатомного взаимодействия.

Принципиальная сущность процесса сварки очень проста. Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы. Процесс соединения после соприкосновения протекает самопроизвольно (спонтанно), без затрат энергии и весьма быстро, практически мгновенно.

Объединение отдельных объёмов конденсированной твёрдой или жидкой фазы в один общий объём сопровождается уменьшением свободной поверхности и запаса энергии в системе, а потому термодинамически процесс объединения должен идти самопроизвольно, без подведения энергии извне. Свободный атом имеет избыток энергии по сравнению с атомом конденсированной системы, и присоединение свободного атома сопровождается освобождением энергии. Такое самопроизвольное объединение наблюдается на объёмах однородной жидкости.

Гораздо труднее происходит объединение объёмов твёрдого вещества: приходится затрачивать значительные количества энергии и применять сложные технические приёмы для сближения соединяемых атомов. При комнатной температуре обычные металлы не соединяются не только при простом соприкосновении, но и при сжатии значительными усилиями. Две стальные пластинки, тщательно отшлифованные и пригнанные, подвергнутые длительному сдавливанию усилием в несколько тысяч килограммов, по снятии давления легко разъединяются, не обнаруживая никаких признаков соединения. Если соединения возникают в отдельных точках, они разрушаются действием упругих сил при снятии давления. Соединению твёрдых металлов мешает, прежде всего, их твёрдость, при их сближении действительное соприкосновение происходит лишь в немногих физических точках, и расширение площади действительного соприкосновения достаточно затруднительно.

Металлы с малой твёрдостью, например, свинец, достаточно прочно соединяются уже при незначительном сдавливании. У более важных для техники металлов твёрдость настолько велика, что поверхность действительного соприкосновения очень мала по сравнению с общей кажущейся поверхностью соприкосновения, даже на тщательно обработанных и пригнанных поверхностях.

На процесс соединения сильно влияют загрязнения поверхности металла - окислы, жировые плёнки и пр., а также слои адсорбированных молекул газов, образующиеся на свежезачищенной поверхности металла под действием атмосферы почти мгновенно. Поэтому чистую поверхность металла, лишенную слоя адсорбированных газов, можно сколько-нибудь длительно сохранить лишь в высоком вакууме. Такие естественные условия имеются в космическом пространстве, где металлы получают способность довольно прочно свариваться или “схватываться” при случайных соприкосновениях. В обычных же, земных условиях приходится сталкиваться с отрицательным действием, как твёрдости металлов, так и слоя адсорбированных газов на поверхности. Для борьбы с этими затруднениями техника использует два основных средства: нагрев и давление .

Все существующие способы сварки можно разделить на две основные группы: сварку давлением (контактная, газопрессовая, трением, холодная, ультразвуком) и сварку плавлением (газовая, термитная, электродуговая, электрошлаковая, электронно-лучевая, лазерная).

Атом на свободной поверхности металла в положении 1 имеет энергию h , атом в объёме металла в положении 3 - меньшую энергию h0 ; соединение объёмов металла с уничтожением свободной поверхности сопровождается освобождением энергии на атом: dh=h-h0 . Но для перемещения из положения 1 в положение 3 атом должен преодолеть энергетический порог и пройти положение 2 с энергией H . Для преодоления энергетического порога атому нужно подвести энергию dH = H - h , без чего невозможно преодоление порога и соединение объёмов металла. Энергия dH расходуется на упругую и пластическую деформации металла, необходимую для сближения поверхностей металла, на его нагрев разрушение плёнки адсорбированных газов и т.д. Нагрев снижает энергетический порог, препятствующий соединению твёрдых металлов; расплавление сводит высоту порога почти к нулю, делая возможным соединение без затрат энергии. Соединение атомов при сварке металлов происходит обычно в очень тонком слое, толщиной в несколько атомных диаметров, и зона сварки имеет плёночный характер. Увеличение ширины зоны сварки может быть произведено за счёт таких процессов, как диффузия, растворение, кристаллизация, протекающих более медленно во времени и постепенно распространяющихся по объёму металла.

Сварка

Сварщик за работой

Сварка - это технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), и/или пластическом деформировании.

Сварка применяется для соединения металлов и их сплавов, термопластов во всех областях производства и в медицине.

При сварке используются различные источники энергии: электрическая дуга , электрический ток, газовое пламя, лазерное излучение , электронный луч, трение , ультразвук . Развитие технологий позволяет в настоящее время осуществлять сварку не только в условиях промышленных предприятиях, но в полевых и монтажных условиях (в степи, в поле, в открытом море и т. п.), под водой и даже в космосе. Процесс сварки сопряжен с опасностью возгораний; поражений электрическим током ; отравлений вредными газами; поражением глаз и других частей тела тепловым, ультрафиолетовым, инфракрасным излучением и брызгами расплавленного металла.

Классификация сварки металлов

Температура в столбе сварочной дуги колеблется от 5000 до 12 000 К и зависит от состава газовой среды дуги, материала, диаметра электрода и плотности тока. Температуру приближенно можно определить по формуле, предложенной академиком АН УССР К. К. Хреновым : Tст = 810 × Uдейств , где Tст - температура столба дуги, ; Uдейств - действующий потенциал ионизации, .

Электродуговая сварка

Источником теплоты является электрическая дуга , возникающая между торцом электрода и свариваемым изделием при протекании сварочного тока в результате замыкания внешней цепи электросварочного аппарата . Сопротивление электрической дуги больше, чем сопротивление сварочного электрода и проводов, поэтому бо́льшая часть тепловой энергии электрического тока выделяется именно в плазму электрической дуги. Этот постоянный приток тепловой энергии поддерживает плазму (электрическую дугу) от распада.

Выделяющееся тепло (в том числе за счёт теплового излучения из плазмы) нагревает торец электрода и оплавляет свариваемые поверхности, что приводит к образованию сварочной ванны - объёма жидкого металла. В процессе остывания и кристаллизации сварочной ванны образуется сварное соединение. Основными разновидностями электродуговой сварки являются: ручная дуговая сварка, сварка неплавящимся электродом, сварка плавящимся электродом, сварка под флюсом, электрошлаковая сварка.

Сварка неплавящимся электродом

В англоязычной литературе известно как en:gas tungsten arc welding (GTA welding, TGAW ) или tungsten inert gas welding (TIG welding, TIGW de:wolfram-inertgasschweißen (WIG ).

В качестве электрода используется стержень, изготовленный из графита или вольфрама , температура плавления которых выше температуры, до которой они нагреваются при сварке. Сварка чаще всего проводится в среде защитного газа (аргон , гелий , азот и их смеси) для защиты шва и электрода от влияния атмосферы, а также для устойчивого горения дуги. Сварку можно проводить как без, так и с присадочным материалом. В качестве присадочного материала используются металлические прутки, проволока, полосы.

Полуавтоматическая сварка проволокой в защитных газах

В англоязычной иностранной литературе именуется как en:gas metal arc welding (GMA welding, GMAW ), в немецкоязычной литературе - de:metallschutzgasschweißen (MSG ). Разделяют сварку в атмосфере инертного газа (metal inert gas, MIG ) и в атмосфере активного газа (metal active gas, MAG ).

В качестве электрода используется металлическая проволока, к которой через специальное приспособление (токопроводящий наконечник) подводится ток. Электрическая дуга расплавляет проволоку, и для обеспечения постоянной длины дуги проволока подаётся автоматически механизмом подачи проволоки. Для защиты от атмосферы применяются защитные газы (аргон , гелий , углекислый газ и их смеси), подающиеся из сварочной головки вместе с электродной проволокой. Следует заметить, что углекислый газ является активным газом - при высоких температурах происходит его диссоциация с выделением кислорода. Выделившийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители (такие, как марганец и кремний). Другим следствием влияния кислорода, также связанным с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.

Ручная дуговая сварка

В англоязычной литературе именуется en:shielded metal arc welding (SMA welding, SMAW ) или manual metal arc welding (MMA welding, MMAW ).

Ручная (TIG) и полуавтоматическая (MIG, MAG) импульсная сварка алюминия является более сложным процессом, чем электродуговая сварка чёрных металлов. Причиной тому - уникальные свойства алюминиевых сплавов, за которые они и ценятся.

Сварка под флюсом

В англоязычной иностранной литературе именуется как SAW. В этом виде сварки конец электрода (в виде металлической проволоки или стержня) подаётся под слой флюса . Горение дуги происходит в газовом пузыре, находящемся между металлом и слоем флюса, благодаря чему улучшается защита металла от вредного воздействия атмосферы и увеличивается глубина проплавления металла.

Газопламенная сварка

Газопламенная пайка

Ацетилено-кислородное пламя (температура около 3150 °C в 2-3 мм от ядра)

Сварщик, 1942 год

Источником теплоты является газовый факел, образующийся при сгорании смеси кислорода и горючего газа. В качестве горючего газа могут быть использованы ацетилен , МАФ , пропан , бутан , блаугаз, водород , керосин , бензин , бензол и их смеси. Тепло, выделяющееся при горении смеси кислорода и горючего газа, расплавляет свариваемые поверхности и присадочный материал с образованием сварочной ванны. Пламя может быть окислительным , «нейтральным» или восстановительным (науглероживающим), это регулируется соотношением кислорода и горючего газа.

  • В последние годы [когда? ] в качестве заменителя ацетилена применяется новый вид топлива - сжиженный газ МАФ (метилацетилен-алленовая фракция). МАФ обеспечивает высокую скорость сварки и высокое качество сварочного шва, но требует применения присадочной проволоки с повышенным содержанием марганца и кремния (СВ08ГС, СВ08Г2С). МАФ гораздо безопаснее ацетилена, в 2-3 раза дешевле и удобнее при транспортировке. Благодаря высокой температуре сгорания газа в кислороде (2927 °C) и высокому тепловыделению (20 800 ккал/м³), газовая резка с использованием МАФ гораздо эффективнее резки с использованием других газов, в том числе и ацетилена.
  • Огромный интерес представляет использование для газовой сварки дициана , ввиду его весьма высокой температуры сгорания (4500 °C). Препятствием к расширенному применению дициана для сварки и резки является его повышенная токсичность. С другой стороны, эффективность дициана весьма высока и сравнима с электрической дугой, и потому дициан представляет значительную перспективу для дальнейшего прогресса в развитии газопламенной обработки. Пламя дициана с кислородом, истекающее из сварочной горелки, имеет резкие очертания, очень инертно к обрабатываемому металлу, короткое и имеющее пурпурно-фиолетовый оттенок. Обрабатываемый металл (сталь) буквально «течёт», и при использовании дициана допустимы очень большие скорости сварки и резки металла.
  • Значительным прогрессом в развитии газопламенной обработки с использованием жидких горючих может дать применение ацетилендинитрила и его смесей с углеводородами ввиду самой высокой температуры сгорания (5000 °C). Ацетилендинитрил склонен при сильном нагреве к взрывному разложению, но в составе смесей с углеводородами гораздо более стабилен. В настоящее время производство ацетилендинитрила очень ограничено и стоимость его высока, но при развитии производства ацетилендинитрил может весьма ощутимо развить области применения газопламенной обработки во всех её областях применения.

Электрошлаковая сварка

Стыковая сварка пластмасс оплавлением

Источником теплоты служит плоский нагревательный элемент, покрытый PTFE . Сварка делится на 5 этапов: нагрев под давлением, прогрев массы, вывод нагревательного элемента, сварка, затвердевание.

Сварка с закладными нагревателями

Применяется для сварки полиэтиленовых труб. Источником теплоты служит элементы сопротивления запаянные в сварной муфте. При сварке с закладными электронагревателями полиэтиленовые трубы соединяются между собой при помощи специальных пластмассовых соединительных деталей, имеющих на внутренней поверхности встроенную электрическую спираль из металлической проволоки. Получение сварного соединения происходит в результате расплавления полиэтилена на соединяемых поверхностях труб и деталей (муфт, отводов, тройников седловых отводов) за счёт тепла, выделяемого при протекании электрического тока по проволоке спирали, и последующем естественном охлаждении соединения.

Термомеханический класс

Контактная сварка

При сварке происходят два последовательных процесса: нагрев свариваемых изделий до пластического состояния и их совместное пластическое деформирование. Основными разновидностями контактной сварки являются: точечная контактная сварка , стыковая сварка, рельефная сварка, шовная сварка.

Точечная сварка

При точечной сварке детали зажимаются в электродах сварочной машины или специальных сварочных клещах. После этого между электродами начинает протекать большой ток, который разогревает металл деталей в месте их контакта до температур плавления. Затем ток отключается и осуществляется «проковка» за счёт увеличения силы сжатия электродов. Металл кристаллизуется при сжатых электродах и образуется сварное соединение.

Стыковая сварка

Заготовки сваривают по всей плоскости их касания. В зависимости от марки металла, площади сечения заготовок и требований к качеству соединения стыковую сварку можно выполнять одним из способов.

Стыковая сварка сопротивлением

Заготовки, установленные и закреплённые в стыковой машине, прижимают одну к другой усилием определённой величины, после чего по ним пропускают электрический ток. При нагревании металла в зоне сварки до пластического состояния происходит осадка. Ток выключают до окончания осадки. Данный способ сварки требует механической обработки и тщательной зачистки поверхностей торцов заготовок.

Неравномерность нагрева и окисление металла на торцах заготовок понижают качество сварки сопротивлением, что ограничивает область её применения. С увеличением сечения заготовок качество сварки снижается особенно заметно, главным образом из-за образования окислов в стыке.

Стыковая сварка непрерывным оплавлением

Контактная сварка непрерывным оплавлением трубы газопровода диаметром 1420 мм в Пскове на заводе ТЭСО

Состоит из двух стадий: оплавления и осадки. Заготовки устанавливают в зажимах машины, затем включают ток и медленно сближают их. При этом торцы заготовок касаются в одной или нескольких точках. В местах касания образуются перемычки, которые мгновенно испаряются и взрываются. Взрывы сопровождаются характерным выбросом из стыка мелких капель расплавленного металла. Образующиеся пары металла играют роль защитной атмосферы и уменьшают окисление расплавленного металла. При дальнейшем сближении заготовок образование и взрыв перемычек происходят на других участках торцов. В результате заготовки прогреваются в глубину, а на торцах возникает тонкий слой расплавленного металла, облегчающий удаление окислов из стыка. В процессе оплавления заготовки укорачиваются на заданный припуск. Оплавление должно быть устойчивым (непрерывное протекание тока при отсутствии короткого замыкания заготовок), особенно перед осадкой.

При осадке скорость сближения заготовок резко увеличивают, осуществляя при этом пластическую деформацию на заданный припуск. Переход от оплавления к осадке должен быть мгновенным, без малейшего перерыва. Осадку начинают при включённом токе и завершают при выключенном.

Стыковая сварка непрерывным оплавлением обеспечивает равномерный прогрев заготовок по сечению, торцы заготовок перед сваркой не требуют тщательной подготовки, можно сваривать заготовки с сечением сложной формы и большой площадью, а также разнородные металлы и позволяет получать стабильное качество стыков. Её существенным преимуществом является также возможность сравнительно легко автоматизировать процесс.

Стыковую сварку оплавлением применяют для соединения заготовок сечением до 0,1 м². Типичными изделиями являются элементы трубчатых конструкций, колеса, рельсы, железобетонная арматура, листы, трубы.

Рельефная сварка

На деталях для сварки предварительно создают рельефы - локальные возвышения на поверхности размером несколько миллиметров в диаметре. При сварке контакт деталей происходит по рельефам, которые расплавляются, проходящим через них, сварочным током. При этом происходит пластическая деформация рельефов, выдавливаются оксиды и загрязнения. После прекращения протекания сварочного тока происходит кристаллизация расплавленного металла и образование соединения. Преимуществом данного вида сварки является возможность получения за один цикл нескольких сварных соединений высокого качества.

Диффузионная сварка

Сварка осуществляется за счёт диффузии - взаимного проникновения атомов свариваемых изделий при повышенной температуре. Сварку проводят в вакуумной установке, нагревая места соединения до 800 °C. Вместо вакуума может быть использована среда защитных газов . Методом диффузной сварки можно пользоваться при создании соединений из разнородных металлов , отличающихся по своим физико-химическим свойствам, изготавливать изделия из многослойных композитных материалов .

Способ был разработан в 1950-х годах Н. Ф. Казаковым.

Кузнечная сварка

Первый в истории вид сварки. Соединение материалов осуществляется за счёт возникновения межатомных связей при пластическом деформировании инструментом (ковочным молотом). В настоящее время в промышленности практически не используется.

Сварка высокочастотными токами

Источником теплоты служит высокочастотный ток, проходящий между свариваемыми изделиями. При последующем пластическом деформировании и остывании образуется сварное соединение.

Сварка трением

Существует несколько схем сварки трением , первой появилась соосная. Суть процесса состоит в следующем: на специальном оборудовании (машине сварки трением) одна из свариваемых деталей устанавливается во вращающийся патрон , вторая крепится в неподвижный суппорт , который имеет возможность перемещения вдоль оси. Деталь, установленная в патрон, начинает вращаться, а деталь, установленная в суппорте, приближается к первой и достаточно большим давлением воздействует на неё. В результате трения одного торца о другой происходит износ поверхностей и слои металла разных деталей приближаются друг к другу на расстояния, соразмерные размеру атомов. Начинают действовать атомные связи (образуются и разрушаются общие атомные облака), в результате возникает тепловая энергия, которая нагревает в локальной зоне концы заготовок до температуры ковки. По достижении необходимых параметров патрон резко останавливается, а суппорт продолжает давить ещё какое-то время, в результате образуется неразъёмное соединение. Сварка происходит в твёрдой фазе, аналогично кузнечной сковке.

Способ достаточно экономичный. Автоматизированные установки для сварки трением потребляют электроэнергии в 9 раз меньше, чем установки для контактной сварки. Соединяются детали за считанные секунды, при этом практически нет газовых выделений. При прочих преимуществах получается высокое качество сварки, так как не возникает пористости, включений, раковин. При постоянстве режимов, обеспечиваемых автоматикой оборудования, обеспечивается постоянство качества сварного соединения, что, в свою очередь, позволяет исключить дорогостоящий 100%-й контроль при обеспечении качества. К недостаткам следует отнести:

  • сложность необходимого оборудования;
  • узкий спектр применения метода (свариваются тела вращения в стык);
  • невозможность применения в непроизводственных условиях;
  • диаметры свариваемых деталей от 4 до 250 мм.

Способ позволяет сваривать разнородные материалы: медь и алюминий , медь и сталь , алюминий и сталь , в том числе те, что невозможно сварить другими способами.

Идея сваривать детали трением была высказана токарем -изобретателем А. И. Чудиковым. В 1950-е годы на простом токарном станке ему удалось прочно соединить два стержня из низкоуглеродистой стали.

На сегодняшний день существует несколько схем сварки трением: такие как аксиальная, перемешиванием (позволяющая сваривать неподвижные детали), инерционная и др.

Механический класс

Сварка взрывом

Сварка осуществляется сближением атомов свариваемых изделий на расстояние действия межатомных сил за счёт энергии, выделяемой при взрыве . С помощью данного способа сварки часто получают биметаллы .

Ультразвуковая сварка металлов

Сварка осуществляется сближением атомов свариваемых металлических изделий на расстояние действия межатомных сил за счёт энергии ультразвуковых колебаний, вводимых в материалы. Ультразвуковая сварка характеризуется рядом положительных качеств, что несмотря на высокую стоимость оборудования, обуславливает её применение в производстве микросхем (сварка проводников с контактными площадками), прецизионных изделий, сварка металлов разных типов и металлов с неметаллами.

Холодная сварка

Схема точечной холодной сварки

Холодная сварка представляет собою соединение однородных или неоднородных металлов при температуре ниже минимальной температуры рекристаллизации ; сварка происходит благодаря пластической деформации свариваемых металлов в зоне стыка под воздействием механического усилия. Холодная сварка может быть стыковой, точечной и шовной .
Прочность соединения существенно зависит от усилия сжатия и степени деформации свариваемых деталей.

Сварка в искусстве

Сварка часто встречается как предмет социалистического реализма .



Электросварщик. Бюст в Музее социалистического искусства в Софии Сварка в космосе на почтовой марке. 2006 год


См. также

Примечания

Литература

Сварка металлов - это процесс, в результате которого образуется неразъемное соединение путем установления межатомных связей между свариваемыми частями при их местном или общем нагреве, пластическом деформировании или при совместном воздействии того и другого. Современные технологии позволяют производить сварку практически в любых условиях: как в специально оборудованном цехе, так и на открытом воздухе, под водой и даже в космосе. Для выполнения сварных соединений необходим источник энергии, им может быть: электрическая дуга, горящий газ, электронный луч, лазерное излучение, ультразвук, трение.

Классификация видов сварки

По основным физическим признакам выделяют три класса сварных соединений, в зависимости от используемой формы энергии: термический класс - используется тепловая энергия, термомеханический класс - тепловая энергия и давление, механический класс - механическая энергия и давление.

К термическому классу относят следующие виды сварки: электродуговая, газопламенная, плазменная, лазерная, электронно-лучевая, электрошлаковая. Самый первый в истории вид сварки металлов - кузнечный, относится к термомеханическому классу, также к этому классу относят: контактную, диффузионную, сварку высокочастотными токами и сварку трением. Механический класс включает сварку взрывом, ультразвуковую и холодную сварки.

Применение наиболее распространенных видов сварки

Самым широко распространенным способом сварки металлов является электродуговая сварка. Ручная дуговая сварка удобна при выполнении коротких и криволинейных швов, например, при изготовлении закладных деталей , и при работе в трудно доступных местах, например, при изготовлении металлоконструкций на заказ и их монтаже . Автоматическую сварку под флюсом применяют в серийном и массовом производствах при необходимости устройства длинных прямолинейных или кольцевых швов, например, при изготовлении подкрановых балок.

Другим распространенным способом является газовая сварка. При газовой сварке металлические заготовки нагреваются более плавно, чем при дуговой, что и определяет основные области ее применения: при сварке легкоплавких металлов и сплавов, требующих постепенного нагрева и охлаждения, а также тонкостенных металлов толщиной до 3х мм, например, при сварке трубы стальной для водопровода.